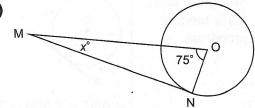
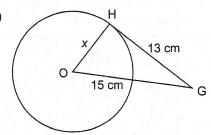

Unit 8 Study Guide

Skill	Description	Example
Recognize and apply tangent properties	$ \begin{array}{c} O \\ A \\ APO = \angle BPO = 90^{\circ} \end{array} $	$x^{\circ} = 90^{\circ}$
Recognize and apply chord properties in circles	O A B C If OB \perp AC, then AB = CB. If AB = CB, then OB \perp AC.	$x^{\circ} = 90^{\circ} \text{ and } y^{\circ} = 60^{\circ}$ $ML^{2} = 10^{2} - 5^{2}$
Recognize and apply angle properties in a circle	 Inscribed and central angles ∠BOC = 2∠BAC, or ∠BAC = ½∠BOC Inscribed angles ∠ACB = ∠ADB = ∠AEB Angles on a semicircle ∠ACB = ∠ADB = ∠AEB = 90° 	$x^{\circ} = 90^{\circ}$ $y^{\circ} = 50^{\circ}$ $z^{\circ} = 100^{\circ}$


Unit 8 Review

1. Find each value of x° and y° . Segments RS and MN are tangents.

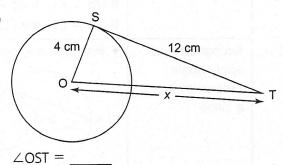
a)



b)

2. Find each value of x to the nearest tenth. Segments GH and ST are tangents.

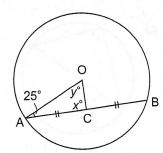
a)



$= x^2 + $	∠OHG	-		
		$= x^2 -$	+	

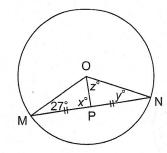
	٧.	

So,
$$x \doteq$$
____cm


b)

Avne pšakped ar i

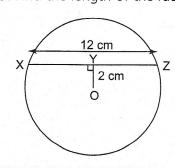
So,
$$x \doteq \underline{\hspace{1cm}}$$
 cm


8.2 3. Find the values of x° and y° .

By the chord properties

By the angle sum property

4. Find the values of x° , y° , and z° .



$$OM = ON$$
, so \triangle _____ is isosceles.

$$\angle \mathsf{ONP} = \angle \mathsf{OMP}$$

By the _____

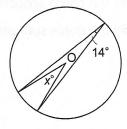
5. Find the length of the radius of the circle to the nearest tenth.

$$XY = \frac{1}{2} \times \underline{\qquad}$$

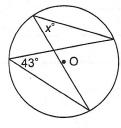
$$= \frac{1}{2} \times \underline{\qquad} cm$$

$$= \underline{\qquad} cm$$

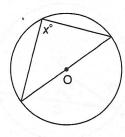
Draw radius OX.


$$OX^2 =$$
_____ + XY^2

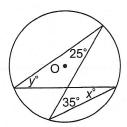
$$OX^2 = _{---} + _{---}$$


The radius is about ____ cm.

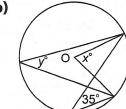
8.3 6. Find each value of x° .


a)

b)

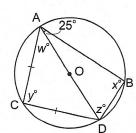


c)



7. Find each value of x° and y° .

a)



b)

$$x^{\circ} = 2 \times \underline{\hspace{1cm}}$$

8. Find the value of w° , x° , y° , and z° .

$$x^{\circ} = y^{\circ} = \underline{\hspace{1cm}}$$

By the angle sum property

$$\triangle ACD$$
 is ______. So, $\angle CDA = \angle CAD = w^{\circ}$

$$w^{\circ} + w^{\circ} = \underline{\hspace{1cm}} - \underline{\hspace{1cm}}$$

By the angle sum in $\triangle ACD$

2w° = _____

$$W^{\circ} = \frac{1}{2}$$