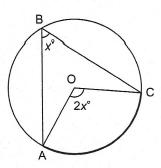

8.3 Properties of Angles in a Circle

FOCUS Use inscribed angles and central angles to solve problems.

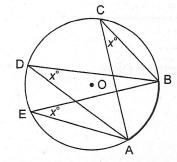
In a circle:


- A central angle has its vertex at the centre.
- An inscribed angle has its vertex on the circle.

Both angles in the diagram are **subtended** by **arc** AB.

Central Angle and Inscribed Angle Property

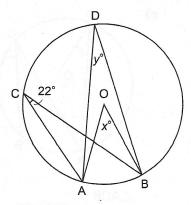
The measure of a central angle is twice the measure of an inscribed angle subtended by the same arc.

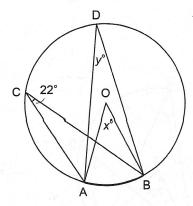


So,
$$\angle AOC = 2\angle ABC$$
, or $\angle ABC = \frac{1}{2}\angle AOC$

Inscribed Angles Property

Inscribed angles subtended by the same arc are equal.


So,
$$\angle ACB = \angle ADB = \angle AEB$$


Example 1

Using Inscribed and Central Angles

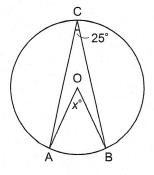
Find the values of x° and y° .

Solution

Central \angle AOB and inscribed \angle ACB are both subtended by arc AB.

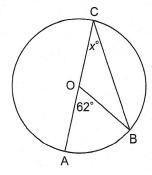
So,
$$\angle AOB = 2 \angle ACB$$

$$x^{\circ} = 2 \times 22^{\circ}$$


 \angle ACB and \angle ADB are inscribed angles subtended by the same arc AB.

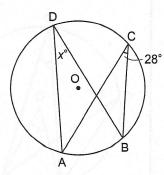
So,
$$\angle ADB = \angle ACB$$

$$y^{\circ} = 22^{\circ}$$


1. Find each value of x° .

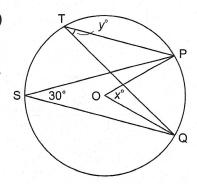
a)

$$\angle AOB = 2 \times \angle ACB$$

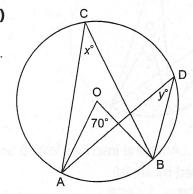

b)

$$\angle ACB = \frac{1}{2} \times \underline{\hspace{1cm}}$$

$$x^{\circ} = \frac{1}{2} \times \underline{\hspace{1cm}}$$


c)

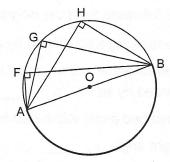
$$\chi^{\circ} = \underline{}$$


2. Find the values of x° and y° .

a)

$$\angle QOP = 2 \times \angle QSP$$

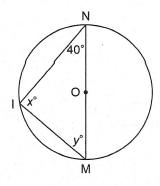
b)


$$\angle ACB = \frac{1}{2} \times \underline{\hspace{1cm}}$$

$$\chi^{\circ} = \frac{1}{2} \times \underline{\hspace{1cm}}$$

Angles in a Semicircle Property

Inscribed angles subtended by a semicircle are right angles.


$$\angle AFB = \angle AGB = \angle AHB = 90^{\circ}$$

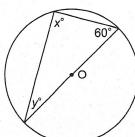
Example 2

Finding Angles in an Inscribed Triangle

Find x° and y° .

Solution

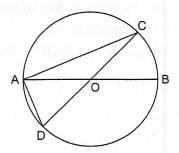
∠MIN is an inscribed angle subtended by a semicircle.


So,
$$x^{\circ} = 90^{\circ}$$

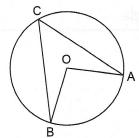
$$y^{\circ} = 180^{\circ} - 90^{\circ} - 40^{\circ}$$

= 50°

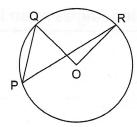
By the angle sum property in $\triangle MIN$


Check

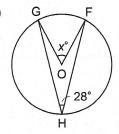
1. Find the values of x° and y° .



Practice

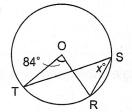

- 1. Name the following from the diagram.
 - a) the central angle subtended by arc CB: ∠_____
 - **b)** the central angle and inscribed angle subtended by arc AD: ∠_____ and ∠_____
 - c) the inscribed angle subtended by a semicircle: ∠_____
 - d) the right angle: ∠_____

- **2.** In each circle, name a central angle and an inscribed angle subtended by the same arc. Shade the arc.
 - a)



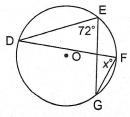
Central angle: ∠_____ Inscribed angle: ∠_____ b)

Central angle: ∠_____ Inscribed angle: ∠_____

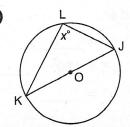

- 3. Determine each indicated measure.
 - a)

 $\angle GOF = 2 \times \angle GHF$

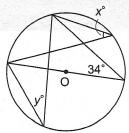
=



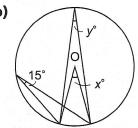
$$\angle TSR = \frac{1}{2} \times \angle$$

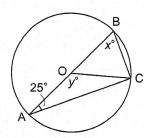

$$\chi^{\circ} = \frac{1}{2} \times \underline{\hspace{1cm}}$$

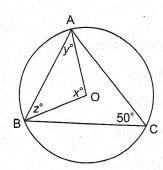
c)



∠DEG = ____


d)


a)


b)

5. Find the value of x^0 and y^0 .

6. Find the value of x° , y° , and z° .

In △OAB:

$$y^{\circ} = z^{\circ}$$

By the angle sum property

By the angle sum property

$$2y^{\circ} = \underline{\hspace{1cm}}$$

$$y^{\circ} = \frac{}{2}$$

So,
$$y^{\circ} =$$
____ and $z^{\circ} =$ ____