8.2 Properties of Chords in a Circle

FOCUS Use chords and related radii to solve problems.

A **chord** of a circle joins 2 points on the circle.

Chord Properties

In any circle with centre O and chord AB:

- If OC bisects AB, then OC \perp AB.
- If OC \perp AB, then AC = CB.
- The perpendicular bisector of AB goes through the centre O.

Example 1

Finding the Measure of Angles in a Triangle

Find x° , y° , and z° .

Solution

OC bisects chord AB, so OC \perp AB

Therefore, $x^{\circ} = 90^{\circ}$

By the angle sum property in $\triangle OAC$:

$$y^{\circ} = 180^{\circ} - 90^{\circ} - 30^{\circ}$$

 $= 60^{\circ}$

Since radii are equal, OA = OB, and $\triangle OAB$ is isosceles.

$$\angle OBA = \angle OAB$$

So,
$$z^{\circ} = 30^{\circ}$$

In an isosceles triangle, 2 base angles are equal. **1.** Find the values of a and b.

13 cm 5 cm

			_
		1	2/
	_	_	d-
 _	-		-

By the Pythagorean Theorem in right △OFG

So, $a = \underline{\hspace{1cm}}$ cm

____=___

By the chord properties

So, $b = \underline{\hspace{1cm}} cm$

Practice

In each diagram, O is the centre of the circle.

1. Name all radii, chords, and diameters.

a)

Radii: _____

Chords: _

Diameters:

b)

Radii: ___

Chords: _

Diameters: _

2. On each diagram, mark line segments with equal lengths.

Then find each value of a.

a)

$$AC = CB = \underline{\hspace{1cm}} cm$$

So, $a = \underline{\hspace{1cm}} cm$

c)

$$OL = \frac{1}{2} \times \underline{\qquad}$$

$$= \frac{1}{2} \times \underline{\qquad} cm$$

$$= \underline{\qquad} cm$$
So, $a = \underline{\qquad}$

b)

d)

3. Find each value of x° and y° .

a)

$$x^{\circ} = \underline{\hspace{1cm}}$$

 $y^{\circ} = 180^{\circ} - \underline{\hspace{1cm}} - \underline{\hspace{1cm}}$

y° = 180° - ____ - ____

b)

4. Find the length of chord BC.

$$=$$
 + DB²

$$=$$
 ____ + DB²

So, chord BC has length:
$$2 \times \underline{\hspace{1cm}} cm = \underline{\hspace{1cm}} cm$$

$$AN = \frac{1}{2} \times \underline{\qquad}$$

$$= \frac{1}{2} \times \underline{\qquad}$$

$$=\frac{1}{2}\times$$
 ____ cm

$$=$$
 + ON^2

$$=$$
 $=$ $+$ ON^2

Bv	the	Pythagorean	Theorem
- ,		, , , ,	

By the chord properties

By the Pythagorean Theorem.

5. Find ON.

	200		
	5 (%)		

Can you ...

- Solve problems using tangent properties?
- Solve problems using chord properties?
- 8.1 In each diagram, O is the centre of the circle.

 Assume that lines that appear to be tangent are tangent.
 - 1. Name the angles that measure 90°.

a)

b)

2. Find the unknown angle measures.

a)

b)

Tangent-radius property

Angle sum property

3. Find the values of a and b to the nearest tenth.

 $\angle OPQ =$ By the tangent-radius property

OQ is ______ of \triangle OPQ.

 $a^2 = \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$

By the Pythagorean Theorem

So, $a \doteq \underline{\hspace{1cm}}$ cm

b)

∠OBC = ____

OB is _____ of \triangle OBC.

 $= b^2 +$

So, $b \doteq$ ____ cm

8.2 4. Find the unknown measures.

a)

$$\triangle$$
OXY is _____.

b)

$$MN = 2 \times \underline{\hspace{1cm}}$$

So,
$$d = ___$$
cm

20

5. Find each value of x° , y° , and z° .

6. Find the length of OP.

$$QP = \frac{1}{2} \times QR$$
$$= \frac{1}{2} \times \underline{\qquad} cm$$

$$OQ^2 = \underline{\hspace{1cm}} + OP^2$$
$$= \underline{\hspace{1cm}} + OP^2$$

=

So, the length of OP is _____ cm.