Circle Geometry

What You'll Learn

How to

- Solve problems involving tangents to a circle
- Solve problems involving chords of a circle
- Solve problems involving the measures of angles in a circle

Why Is It Important?

Circle properties are used by .

artists, when they create designs and logos

Key Words

chord radius (radii)

perpendicular bisector right angle

central angle tangent inscribed angle

point of tangency

arc diameter

subtended right triangle semicircle isosceles triangle

8.1 Properties of Tangents to a Circle

FOCUS Use the relationship between tangents and radii to solve problems.

A tangent touches a circle at exactly one point.

Tangent-Radius Property

A tangent to a circle is perpendicular to the radius drawn to the point of tangency.

So, OP
$$\perp$$
 AB, \angle OPA = 90° and \angle OPB = 90°

Example 1

Finding the Measure of an Angle in a Triangle

BP is tangent to the circle at P. O is the centre of the circle. Find the measure of x° .

Solution

By the tangent-radius property: \angle OPB = 90° Since the sum of the angles in \triangle OPB is 180°:

$$x^{\circ} = 180^{\circ} - 90^{\circ} - 50^{\circ}$$

= 40°
So, x° is 40°.

Check

1. Find the value of x° .

Practice

In each question, O is the centre of the circle.

1. From the diagram, identify:

a) 3 radii

b) 2 tangents

,

c) 2 points of tangency

d) 4 right angles

2. What is the measure of each angle?

a)

b)

∠PRO =

3. Find each value of x° .

a)

b)

= 1000

8.1 Skill Builder

Solving for Unknown Measures in Triangles

Here are 2 ways to find unknown measures in triangles.

Angle Sum Property

In any triangle:

Pythagorean Theorem

In any right △PQR:

Here is how to find the unknown measures in right $\triangle PQR$.

In \triangle PQR, the angles add up to 180°. To find x°, start at 180° and subtract the known measures.

$$x^{\circ} = 180^{\circ} - 90^{\circ} - 60^{\circ}$$

= 30°

By the Pythagorean Theorem:

$$QR^2 = PR^2 + PQ^2$$

$$8^2 = q^2 + 7^2$$

So: $q^2 = 8^2 - 7^2$

$$q=\sqrt{8^2-7^2}$$

So, x° is 30° and q is about 4 cm.

Answer to the same degree of accuracy as the question uses.

Check

1. Find each unknown measure.

a)

b)

Example 2

Using the Pythagorean Theorem in a Circle

MB is a tangent to the circle at B. O is the centre. Find the length of radius OB.

Solution

By the tangent-radius property: \angle OBM = 90°

By the Pythagorean Theorem in right \triangle MOB:

$$OM^2 = OB^2 + BM^2$$

$$10^2 = r^2 + 8^2$$

$$100 = r^2 + 64$$

$$100 - 64 = r^2$$

$$36 = r^2$$

$$\sqrt{36} = r$$

$$r = 6$$

Radius OB has length 6 cm.

Check

1. ST is a tangent to the circle at S. O is the centre.

Find the length of radius OS.

Answer to the nearest millimetre.

OT² = ____ + ____

$$= r^2 +$$

$$_{---} = r^2 + _{---}$$

 $_{---} - _{---} = r^2$

$$\sqrt{} = r$$

OS is about ____ cm long.

By the tangent-radius property

By the Pythagorean Theorem

4. Find each value of x.

Answer to the nearest tenth of a unit.

a)

∠OCT = 90°

=
$$x^2 +$$
= $x^2 +$

So, OC is about ____ km.

By the tangent-radius property

By the Pythagorean Theorem in \triangle OCT

b)

$$\angle \mathsf{OPQ} = \underline{\hspace{1cm}}$$
, and:

$$x^2 =$$
____ + ____

$$x^2 =$$
____ + ____

$$x^2 =$$

$$x = \sqrt{\underline{}}$$

So, OQ is about cm.

c)

$$x^2 =$$
____ + ____

$$x^2 =$$
____ + ____

$$x^2 =$$

$$x = \sqrt{\underline{}}$$

So, OP is about ____ cm.