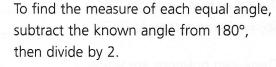
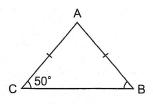
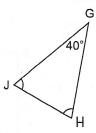
## 7.4 Skill Builder

## Sum of the Angles in a Triangle


In any triangle, the sum of the angle measures is 180°.


So, to find an unknown angle measure:

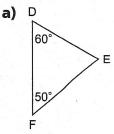
- start with 180°
- subtract the known measures


An isosceles triangle has 2 equal sides and 2 equal angles.

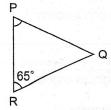
To find the measure of the third angle, subtract the measure of the equal angles twice.



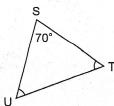



$$\angle A = 180^{\circ} - 50^{\circ} - 50^{\circ}$$
  
= 80°




Sum of equal angles is:  $180^{\circ} - 40^{\circ} = 140^{\circ}$ Measure of each equal angle:  $140^{\circ} \div 2 = 70^{\circ}$ 

#### Check


1. Find the measure of the third angle.



b)



2. Find the measure of each equal angle.



Sum of equal angles is:

Measure of each equal angle:

# 7.4 Similar Triangles

### FOCUS Use the properties of similar triangles to solve problems.

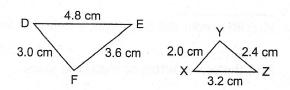
A triangle is a special polygon.

When two triangles are similar:

- matching angles are equal **OR**
- matching sides are proportional

The order in which similar triangles are named gives a lot of information.

Suppose △ABC ~ △DEF.


The symbol ~ means "is similar to."

Then,  $\angle A = \angle D$ ,  $\angle B = \angle E$ , and  $\angle C = \angle F$ Similarly, AB matches DE, BC matches EF, and AC matches DF.

### Example 1

### **Identifying Similar Triangles**

Name the similar triangles.



#### Solution

Angle measures are not given.

So, find out if matching sides are proportional.

In  $\triangle$ DEF, order the sides from shortest to longest: FD  $\triangle$ XYZ, order the sides from shortest to longest: XX

: FD , EF , DE :: XY , YZ , ZX

Find the scale factors of matching sides.

$$\frac{\text{length of FD}}{\text{length of XY}} = \frac{3.0 \text{ cm}}{2.0 \text{ cm}}$$
$$= 1.5$$

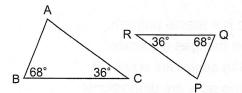
$$\frac{\text{length of EF}}{\text{length of YZ}} = \frac{3.6 \text{ cm}}{2.4 \text{ cm}}$$
$$= 1.5$$

$$\frac{\text{length of DE}}{\text{length of ZX}} = \frac{4.8 \text{ cm}}{3.2 \text{ cm}}$$
$$= 1.5$$

Since all scale factors are the same, the triangles are similar.

The longest and shortest sides meet at vertices: D and X

The two longer sides meet at vertices: E and Z


The two shorter sides meet at vertices: F and Y

So, △DEF ~ △XZY

Read the letters down the columns.

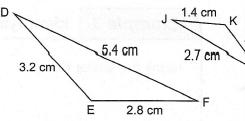
- 1. In each diagram, name two similar triangles.
  - a) Two angles in each triangle are given. The measure of the third angle in each triangle is:

180° –



List matching angles:

Matching angles \_\_\_\_\_ equal.


So, the triangles \_\_\_\_\_ similar.

To name the triangles, order the letters so matching angles correspond.

 $\triangle$ ABC ~  $\triangle$ 

**b)** Find out if matching sides are proportional. In  $\triangle DEF$ , order the sides from shortest to longest:

In  $\triangle$ JKL, order the sides from shortest to longest:



Find the scale factors of matching sides.

length of length of

length of length of \_\_

All scale factors are \_\_\_\_\_\_. So, the triangles

The two longer sides meet at vertices:

and

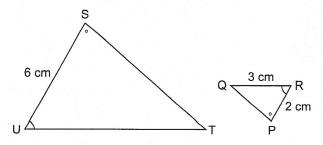
The two shorter sides meet at vertices:

and

The longest and shortest sides meet at vertices:

and

So,  $\triangle DEF \sim \triangle$ \_\_\_\_


#### Example 2

## **Using Similar Triangles to Determine a Length**



These two triangles are similar.

Find the length of TU.



#### Solution

List matching angles:

$$\angle S = \angle P$$

$$\angle T = \angle Q$$

$$\angle U = \angle R$$

 $\triangle$ STU is an enlargement of  $\triangle$ PQR.

Choose a pair of matching sides whose lengths are both known:

$$SU = 6 \text{ cm} \text{ and } PR = 2 \text{ cm}$$

Scale factor =  $\frac{\text{length on enlargement}}{\text{length on original}}$ 

$$=\frac{6 \text{ cm}}{2 \text{ cm}}$$

The scale factor is 3.

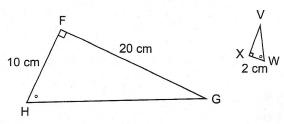
Use the scale factor to find the length of TU.

TU and QR are matching sides.

Length of QR: 3 cm

Scale factor: 3

Length of TU:  $3 \times 3$  cm = 9 cm


So, TU has length 9 cm.

Consider the triangle with the unknown length as a reduction or enlargement of the other triangle.

#### Check

99

**1.** These two triangles are similar. Find the length of XV.



List matching angles:

So, 
$$\triangle$$
FGH ~  $\triangle$ \_\_\_\_\_

\_\_\_\_\_is a reduction of \_\_\_\_\_\_.

Choose a pair of matching sides whose lengths are both known:

Scale factor =  $\frac{\text{length on reduction}}{\text{length on original}}$ =  $\frac{\text{length on original}}{\text{length on original}}$ 

e silj<del>eden ke</del>ji e

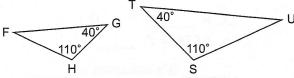
The scale factor is \_\_\_\_\_.

Use the scale factor to find the length of XV.

XV and FG are matching sides.

Length of FG: \_\_\_\_\_

Scale factor: \_\_\_\_\_


Length of XV:

So, XV has length \_\_\_\_\_.

#### Practice

- 1. In each diagram, name two similar triangles.
  - a) Two angles in each triangle are given.

The measure of the third angle in each triangle is: 180° —



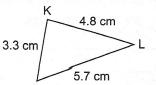
List matching angles:

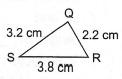
Matching angles \_\_\_\_\_ equal, so, the triangles \_\_\_\_\_ similar.

To name the triangles, order the letters so matching angles correspond.  $\triangle$ FGH ~  $\triangle$ 

**b)** Find out if matching sides are proportional.

In  $\triangle$ JKL, order the sides from shortest to longest:


In  $\triangle$ QRS, order the sides from shortest to longest:


Find the scale factors of matching sides.



length of \_\_\_\_ = \_\_\_\_ = \_\_\_

length of \_\_\_\_ = \_\_\_ = \_\_\_





All scale factors are \_\_\_\_\_\_. So, the triangles

The longest and shortest sides meet at vertices: and

The two shorter sides meet at vertices: \_\_\_\_ and \_\_\_

The two longer sides meet at vertices: and \_\_\_\_\_

So, △JKL ~ △\_\_\_\_

2. Are these two triangles similar?

In  $\triangle$ PQR, order the sides from shortest to longest:

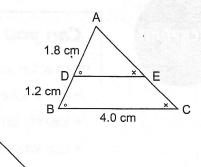
In  $\triangle BCD$ , order the sides from shortest to longest:

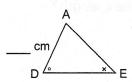


Find the scale factors of matching sides.

length of \_\_\_\_ = \_\_\_ = \_\_\_ = \_\_\_

length of \_\_\_\_ = \_\_\_ = \_\_\_


length of \_\_\_\_ = \_\_\_ = \_\_\_


All scale factors are . So, the triangles

| <b>3.</b> These two triangles are similar. Find the length of EC.             |                  | С                                       | G                                         |
|-------------------------------------------------------------------------------|------------------|-----------------------------------------|-------------------------------------------|
| List matching angles:                                                         |                  |                                         | 4 cm                                      |
| ∠C = ∠D =                                                                     | ∠E =             | 2 cm E                                  | 10 10 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   |
| So, ΔCDE ~ Δ                                                                  |                  |                                         | F 5 cm                                    |
| is a reduction of                                                             | '                |                                         |                                           |
| Choose a pair of matching sides                                               | whose lengths    | are both known:                         |                                           |
| Scale factor = $\frac{\text{length on reduction}}{\text{length on original}}$ |                  |                                         |                                           |
| -1                                                                            |                  |                                         |                                           |
|                                                                               |                  |                                         |                                           |
| The scale factor is                                                           |                  |                                         |                                           |
| Use the scale factor to find the le                                           |                  |                                         |                                           |
| EC and are matching sides                                                     |                  |                                         |                                           |
| Length of:                                                                    |                  |                                         |                                           |
| Scale factor:                                                                 |                  |                                         |                                           |
| Length of EC:                                                                 |                  |                                         |                                           |
| So, EC has length                                                             |                  |                                         |                                           |
| 4. At a certain time of day, two tree                                         | es cast shadow:  | S.                                      | Υ                                         |
| Find the height of the taller tree.                                           |                  |                                         | A. S. |
|                                                                               |                  | В                                       | 77                                        |
| Matching angles are                                                           |                  |                                         | 2 5.4 m                                   |
| So, △ABC ~ △                                                                  |                  | 55° / 3 m                               | 2 3                                       |
| $\triangle$ XYZ is an of                                                      | △ABC.            |                                         | 55°                                       |
| Use sides                                                                     |                  | A <sup>23</sup> J <sup>2</sup> C<br>2 m | 3.6 m                                     |
| to find the scale factor.                                                     |                  |                                         |                                           |
| length on enlargement                                                         |                  |                                         |                                           |
| length on original                                                            |                  |                                         |                                           |
|                                                                               |                  |                                         |                                           |
| The scale factor is 1.8.                                                      |                  |                                         |                                           |
| Use the scale factor to find the h                                            | eight of the tal | ller tree, YZ.                          |                                           |
| BC and YZ are matching sides.                                                 | Caala fasta      |                                         |                                           |
| Length of BC:                                                                 | Scale factor: _  |                                         |                                           |
| Length of YZ:                                                                 |                  |                                         |                                           |
| So, the height of the taller tree is                                          | >                | _•                                      |                                           |

**5.** The two triangles in this diagram are similar. Find the length of DE.

To better see the individual triangles, we draw the triangles separately.





$$\angle A = \underline{\hspace{1cm}} \angle B = \underline{\hspace{1cm}}$$
  
So,  $\triangle ABC \sim \triangle \underline{\hspace{1cm}}$ 

\_\_\_\_\_ is a reduction of \_\_\_\_\_\_

Choose a pair of matching sides whose lengths are both known:

 $\mbox{Scale factor} = \frac{\mbox{length on reduction}}{\mbox{length on original}}$ 

The scale factor is \_\_\_\_\_.

Use the scale factor to find the length of DE.

\_\_\_\_ and \_\_\_\_ are matching sides.

Length of \_\_\_\_: \_\_\_\_

Scale factor:

Length of DE:

So, DE has length \_\_\_\_\_.