Similarity and Transformations

What You'll Learn

- Draw and interpret scale diagrams.
- Apply properties of similar polygons.
- Identify and describe line symmetry and rotational symmetry.

Why It's Important

Similarity and scale diagrams are used by

- construction workers when they construct buildings and bridges
- motorists when they use maps to get around a city

Symmetry is used by

• interior designers when they arrange furniture and accessories in a room

Key Words

enlargement

reduction

scale diagram

scale factor

polygon

non-polygon

similar polygons

proportional

line symmetry

congruent

reflection

line of reflection

tessellation

rotation

rotational symmetry

order of rotation

angle of rotation symmetry

translation

7.1 Skill Builder

Converting Between Metric Units of Length

This table shows the relationships among some of the units of length.

To convert 2.3 m to centimetres:

$$1 \text{ m} = 100 \text{ cm}$$

So, to convert metres to centimetres, multiply by 100.

$$2.3 \text{ m} = 2.3(100 \text{ cm})$$

= 230 cm

To convert 255 cm to metres:

$$1 \text{ cm} = 0.01 \text{ m}$$

So, to convert centimetres to metres, multiply by 0.01.

Check

1. Convert each measure to centimetres.

2. Convert each measure to metres.

)	1800 mm				
	1 mm =	(11.36)	140.00		
	So, 1800 mm	= _	State:		
		= _	3000		_

3. Convert each measure to millimetres.

7.1 Scale Diagrams and Enlargements

FOCUS Draw and interpret scale diagrams that represent enlargements.

A diagram that is an **enlargement** or a **reduction** of another diagram is called a **scale diagram**. The **scale factor** is the relationship between the matching lengths on the two diagrams.

To find the scale factor of a scale diagram, we divide:

length on scale diagram length on original diagram

Example 1

Using Matching Lengths to Determine the Scale Factor

Here is a scale diagram of a pin. The actual length of the pin is 13 mm. Find the scale factor of the diagram.

Solution

Measure the length of the pin in the diagram.

The length is 3.9 cm, or 39 mm.

The scale factor is: $\frac{\text{length on scale diagram}}{\text{length of pin}} = \frac{39 \text{ mm}}{13 \text{ mm}}$

The units of length must be the same.

The scale factor is 3.

When the drawing is an enlargement, the scale factor is greater than 1.

= 3

Check

- 1. Find the scale factor for each scale diagram.
 - a) The actual length of the ant is 6 mm.

Measure the length of the ant in the diagram.

Length = ____ cm, or ____ mm

The scale factor is _____.

b) Length of rectangle in scale diagram:

Length of original rectangle: _____

 $\mbox{Scale factor} = \frac{\mbox{length on scale diagram}}{\mbox{length on original diagram}}$

The scale factor is _____.

To find the dimensions of a scale diagram, multiply each length on the original diagram by the scale factor.

Example 2

Using a Scale Factor to Determine Dimensions

This cylinder is to be enlarged by a scale factor of $\frac{5}{2}$. Find the dimensions of the enlargement.

Solution

Write the scale factor as a decimal.

$$\frac{5}{2} = 5 \div 2$$

$$= 2.5$$

Diameter of original cylinder: 2 cm

Diameter of enlargement: $2.5 \times 2 \text{ cm} = 5 \text{ cm}$

Height of original cylinder: 5 cm

Height of enlargement: 2.5×5 cm = 12.5 cm

The enlargement has diameter 5 cm and height 12.5 cm.

To write a fraction as a decimal, divide the numerator by the denominator.

The length of a rectangle is

always the longer dimension

- **1.** A photo has dimensions 10 cm by 15 cm. Enlargements are to be made with each scale factor below. Find the dimensions of each enlargement.
 - a) Scale factor 4

Length of original photo: _____ =

Width of original photo:

Width of enlargement: 4 × ____ = ___

The enlargement has dimensions _____

b) Scale factor $\frac{13}{4}$

Write the scale factor as a decimal.

Length of original photo:

Length of enlargement: ____ = ___

Width of original photo:

Width of enlargement: ____ = ___

The enlargement has dimensions _____

Practice

- 1. Find the scale factor for each scale diagram.
 - a) The actual length of the cell phone button is 9 mm.

Measure the length of the button in the diagram.

Length = ____ cm, or ____ mm

Scale factor = $\frac{\text{length on scale diagram}}{\text{length of button}} = \frac{}{}$

The scale factor is .

The width of the paperclip in the diagram is: Width = _____ cm, or _____ mm

 $Scale factor = \frac{\text{width on scale diagram}}{\text{width of paperclip}}$

= ____=

2 ABC

The scale factor is _____