6.3 Introduction to Linear Inequalities

FOCUS Write and graph inequalities.

Less than	<	below, under
Less than or equal to	S	up to, at most, no more than, maximum
Greater than	>	over, more than
Greater than or equal to	≥	at least, minimum

Example 1

Writing an Inequality to Describe a Situation

Define a variable and write an inequality to describe the situation.

a)

SPEED LIMIT

b) You must be at least 16 years old to get a driver's licence.

Solution

a) Let s represent the speed.

You can go up to 60 km/h, but not faster.

So, s can equal 60 or be any number less than 60.

The inequality is $s \le 60$.

b) Let a represent the age to get a driver's licence.

"At least 16" means that you must be 16, or older.

You cannot be less than 16.

So, a can equal 16 or be greater than 16.

The inequality is $a \ge 16$.

a ≥ 16 is read as a is greater than or equal to 16.

Check

- **1.** Let *t* represent the temperature in degrees Celsius. Write an inequality to describe each situation:
 - a) For temperatures less than 0°C, make sure to wear warm clothing. t 0
- **b)** The highest temperature we've had this week was 12°C. *t* 12

Linear Inequalities

A linear inequality may be true for many values of the variable.

Example 2

Determining Whether a Number Is a Solution of an Inequality

Is each number a solution of the inequality $x \le 3$? Justify the answers.

- **a)** 5
- **b)** 3
- **c)** 0

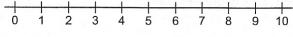
d) -2

Solution

Use a number line to show all the numbers.

The solution of $x \le 3$ is all numbers that are less than or equal to 3.

For a number to be less than 3, it must lie to the left of 3.

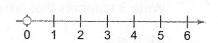

0 and -2 are to the left of 3, so they are solutions.

3 is equal to itself, so it is a solution.

5 is to the right of 3, so it is not a solution.

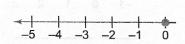
Check

1. a) Is 8 a solution of the inequality x > 0? Use the number line to help.


x > 0 is read as x is greater than 0.

- 8 is to the _____ of 0, so 8 ____ a solution.
- **b)** What are 3 other numbers that are solutions of x > 0?

The solutions of an inequality can be graphed on a number line. For example:


a > 0

a is greater than 0, so 0 is not included in the solution. This is shown by an open circle at 0.

 $z \leq 0$

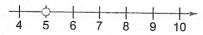
z is less than or equal to 0, so 0 is included in the solution. This is shown by a shaded circle at 0.

Graph each inequality on a number line.

Write 3 numbers that are possible solutions of the inequality.

a)
$$b > 5$$

b)
$$y \le -1$$

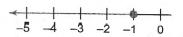

c)
$$-4 \ge n$$

a)
$$b > 5$$
 b) $y \le -1$ **c)** $-4 \ge n$ **d)** $-1 < r$

Solution

a) b > 5

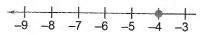
Any number greater than 5 satisfies the inequality.



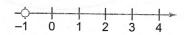
3 possible solutions are: 6, 7, 8

Draw an open circle at 5, because 5 is not part of the solution.

b) $y \le -1$


Any number less than or equal to -1 satisfies the inequality.

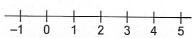
3 possible solutions are: -1, -2, -5


Draw a shaded circle at -1, because -1 is part of the solution.

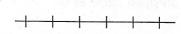
c) $-4 \ge n$ means -4 is greater than or equal to n, or n is less than or equal to -4. $-4 \ge n$ is the same as $n \le -4$.

3 possible solutions are: -4, -5, -6

d) -1 < r means -1 is less than r, or r is greater than -1. -1 < r is the same as r > -1.

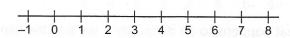


3 possible solutions are: 0, 2, 4

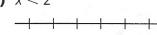

Check

1. Graph each inequality on a number line. Write 3 numbers that are possible solutions for each inequality.

a)
$$h \le 4$$


b)
$$-3 < x$$

Practice


- 1. Is each inequality true or false? If it is false, change the sign to write a true inequality.
 - **a)** 3 < 10
- **b)** 3 < -10 **c)** $0 \le 1$ **d)** $1 \ge 1$

2. Is each number a solution of $x \ge 5$?

- a) 5 _____ b) -1 ____ c) 0 ____ d) 8 ____ e) 6 ___

- **3. a)** Graph each inequality on the number line.
 - i) m > 3
- ii) x < 2

iii) $y \ge -5$

- **b)** Write 3 numbers that are possible solutions of each inequality above.

- **4.** Write an inequality to model each situation.
 - a) The maximum speed is 100 km/h. Let s represent the speed, in km/h.
- **b)** The elevator can hold no more than 12 people. Let n represent the number of people the elevator can hold.
- c) This year, the price of gas has always been at least 70 cents per litre. Let p represent the price of gas, in cents.
- d) This pass card is good for up to 10 entries to the amusement park. Let *n* represent the number of entries.
- **5.** Match each inequality with the graph of its solution below.

 - **a)** x > 1 **b)** $x \le -2$
- **c)** x < 1

- iv) -6 -5 -4 -3 -2
- **6.** Write an inequality whose solution is graphed on the number line.