Unit 5 Study Guide

Skill	Description	Example
Recognize the different parts of a polynomial.	A polynomial may have variable terms and a constant term. The number in front of a variable is its coefficient.	variable term $3x^{2} + 2x + 4$ coefficient constant
Describe and classify polynomials.	A polynomial can be classified by its number of terms and by its term with the greatest degree.	Monomial: $3x$ Binomial: $2x + 5$ Trinomial: $x^2 + 2x - 1$ degree 2
Use algebra tiles to represent a polynomial.	We use these tiles:	$x^2 + 2x - 1$
	A pair of tiles with the same shape and size, but different colours forms a zero pair. The tiles model 0.	
Simplify polynomials by combining like terms.	To simplify a polynomial, add the coefficients of like terms.	Like terms: $4x^2$ and $-2x^2$ Unlike terms: $3x$ and -5 $4x^2 - 2x^2 = 2x^2$
Add polynomials.	To add polynomials, remove the brackets and add the coefficients of like terms.	$(4x^{2} + 3x) + (x^{2} - 5x)$ $= 4x^{2} + 3x + x^{2} - 5x$ $= 4x^{2} + x^{2} + 3x - 5x$ $= 5x^{2} - 2x$
Subtract polynomials.	To subtract a polynomial, add the opposite terms.	$(3x^{2} + 5x) - (2x^{2} - x)$ $= 3x^{2} + 5x + (-2x^{2} + x)$ $= 3x^{2} + 5x - 2x^{2} + x$ $= 3x^{2} - 2x^{2} + 5x + x$ $= x^{2} + 6x$
Multiply a polynomial by a monomial.	To multiply a polynomial by a monomial, use the distributive property.	3x(6x - 5) = $3x(6x) + (3x)(-5)= 18x^2 + (-15x)= 18x^2 - 15x$
Divide a polynomial by a monomial.	To divide a polynomial by a monomial, divide each term of the polynomial by the monomial.	$\frac{24x^2 - 32x}{8x} = \frac{24x^2}{8x} + \frac{-32x}{8x}$ $= 3x - 4$

Unit 5 Review

- **1.** Is the polynomial a monomial, binomial, or trinomial?
 - a) $-3s^2 + 11$ _____.
- **b)** 8*d* _____
- c) $2e^2 9e + 7$ _____. d) 8h 1 _____.
- 2. Sketch algebra tiles to model each polynomial.
 - **a)** 3*k* − 4
- **b)** $2m^2 m + 3$
- c) $-n^2 + 5n 2$

- **5.2 3.** Simplify each polynomial.
 - a) -7d 4 + 8d + 2

b) $3e^2 - 8e + 2e^2 + 11e$

c) $13 - 6h + 2h^2 + 7h - 9$

d) $-9k^2 + 15k - 8 - 2k^2 - 4k + 3$

4. Identify and explain any errors you find.

a) $2x^2 + 5x = 7x^2$

b) 5s - 7s = -2s

5.3 Sketch algebra tiles to model each sum. Then write the sum.

a) (-5e + 7) + (4e - 1)

b) $(6f^2 - 2f + 5) + (-4f^2 - f - 3)$

Remaining tiles: _______ too and the

Remaining tiles:

So,
$$(-5e + 7) + (4e - 1) =$$

b)
$$(-9s^2 + 5s) + (16s^2 - 9s - 14)$$
=
=
=
=

7. Use algebra tiles to model each difference. Sketch the tiles that remain, then write the difference.

a)
$$(-2t + 5) - (-5t + 7)$$

b)
$$(-7u - 2) - (-u^2 - 3u - 1)$$

Remaining tiles:	
So, $(-2t + 5)$ –	(-5t + 7) =

Remaining tiles: _____
So,
$$(-7u - 2) - (-u^2 - 3u - 1) =$$

8. Subtract.

a)
$$(6v + 5) - (13v - 3)$$

= $6v + 5 + ($ _____)
= ____
= ___

b)
$$(10w^2 - 7) - (-2w + 9w^2 + 5)$$
=
=
=
=
=
=
=

9. Write the multiplication sentence modelled by each set of tiles.

10. Multiply.

a)
$$6(-7y^2 + 1)$$

= $6(\underline{\hspace{1cm}}) + 6(\underline{\hspace{1cm}})$

b)
$$-9(-2z^2 - 4z + 5)$$
=
=
=
=

a)
$$\frac{16a-40}{8}$$

$$= \frac{16}{8} + \frac{8}{8}$$
$$= \frac{16}{8} \times a + (\underline{})$$

b)
$$\frac{27b^2 - 9b + 36}{-9}$$

5.6 12. Sketch algebra tiles to multiply. Write the product each time.

b)
$$3d(-d+4) =$$

13. Multiply.

a)
$$3e(5e - 2)$$

= $(3e)(_) + (3e)(_)$
= $_e^2 + (_)e$

14. Divide.

a)
$$\frac{-21k^2}{7k}$$

$$= \frac{-21}{7} \times \frac{k^2}{k}$$

$$= \frac{k \times k}{k_1}$$

$$= \frac{k \times k}{k_1}$$

b)
$$\frac{81m^2 - 45m}{-9m}$$

c)
$$\frac{-33n^2 + 36n}{-3n}$$

=				
=				