5.6 Skill Builder

Multiplying Monomials

The area of this square is:

4 cm

$$4 \times 4 = 16$$

Area = 16 cm²

The area of this rectangle is:

6 cm

$$4 \times 6 = 24$$

 4 cm Area = 24 cm²

We can use the models above to help us multiply 2 monomials.

The area of this square is:

n n

$$n \times n = n^2$$

The area of this rectangle is:

3s 2s $3s \times 2s = 3 \times s \times 2 \times s$ $= 3 \times 2 \times s \times s$ $= 6 \times s^{2}$ $= 6s^{2}$

When one or both of the monomials is negative, we cannot use an area model. We multiply using the rules for multiplying integers.

$$4v \times (-2v) = 4 \times v \times (-2) \times v$$
$$= 4 \times (-2) \times v \times v$$
$$= -8 \times v^{2}$$
$$= -8v^{2}$$

4 and −2 have different signs, so their product is negative.

Check

1. Multiply.

b)
$$c \times (-c) =$$

c)
$$(-f) \times (-f) =$$

d)
$$(-g) \times g =$$

2. Multiply.

a)
$$5r \times 6r = 5 \times r \times 6 \times r$$

= $5 \times 6 \times r \times r$
= ______

5.6 Multiplying and Dividing a Polynomial by a Monomial

FOCUS Use different strategies to multiply and divide a polynomial by a monomial.

To multiply 2d(3d) with algebra tiles:

Draw 2 adjacent sides of a rectangle.

Position _____ tiles to show side lengths 2d and 3d.

$$d \times d = d^2, \text{ so use}$$

$$a \ d^2\text{-tile.}$$

Then fill the rectangle with tiles.

We used 6 d^2 -tiles to fill the rectangle. So, $2d(3d) = 6d^2$

Example 1

Multiplying a Binomial by a Monomial

Find the product: 3e(4e - 2)

Solution

3e(4e - 2)

Draw 2 adjacent sides of a rectangle.

Position tiles to show side lengths 3e and 4e - 2.

When two tiles have the same colour, use a positive tile in the rectangle.

When two tiles have different colours, use a negative tile in the rectangle.

Fill the rectangle with tiles.

We used 12 e^2 -tiles and 6 -e-tiles to fill the rectangle.

So,
$$3e(4e - 2) = 12e^2 - 6e$$

1. Sketch algebra tiles to multiply. Write the product each time.

b)
$$3m(-2m+4)$$

Number of f^2 -tiles used: ____ So, $2f(4f) = ____f^2$

$$3m(-2m + 4) =$$

Example 2 Multiplying a Binomial by a Monomial Symbolically

Find each product:

a)
$$3x(9x - 4)$$

b)
$$-6x(-7x + 5)$$

Solution

a)
$$3x(9x - 4)$$

Use the distributive property.

Multiply each term in brackets by 3x.

Multiply: $3 \times 9 = 27$ and 3(-4) = -12

$$= (3x)(9x) + (3x)(-4)$$

$$= 27x^2 + (-12x)$$

$$= 27x^2 - 12x$$

b) -6x(-7x + 5)

Multiply each term in brackets by
$$-6x$$
.

$$= (-6x)(-7x) + (-6x)(5)$$

$$=42x^2+(-30x)$$

$$=42x^2-30x$$

Multiply:
$$(-6)(-7) = 42$$
 and $(-6)(5) = -30$

Check

1. Multiply.

a)
$$7x(4x + 5)$$

= $(7x)(4x) + (7x)(5)$
= $x^2 + x$

Multiply each term in brackets by 7x. Multiply: $7 \times 4 =$ ___ and $7 \times 5 =$ ___

b)
$$s(-3s + 4)$$

= $(s)(-3s) + (s)(4)$
=

Multiply each term in brackets by s.

Multiply: $1 \times (-3) =$ ____ and $1 \times 4 =$ ____

To divide a polynomial by a monomial, we use what we already know about division.

To divide: $\frac{6a^2}{3a}$

We write the fraction as a product of 2 fractions, then simplify each fraction.

$$\frac{6a^2}{3a} = \frac{6}{3} \times \frac{a^2}{a}$$

$$= 2 \times \frac{a \times a}{a}^{1}$$

$$= 2 \times a$$

$$= 2a$$

a is a common factor of the numerator and the denominator.

2a is the *quotient* of $\frac{6a^2}{3a}$.

Example 3 Dividing a Binomial by a Monomial

Find the quotient: $\frac{-8s^2 + 6s}{-2s}$

Solution

$$\frac{-8s^{2} + 6s}{-2s}$$

$$= \frac{-8s^{2} + 6s}{-2s} + \frac{6s}{-2s}$$

$$= -8 \times s^{2} + \frac{6s}{-2s}$$

Write as the sum of 2 fractions each with denominator -2s.

Simplify the fractions.

$$= \frac{-8}{-2} \times \frac{s^2}{s} + \frac{6}{-2} \times \frac{s}{s}$$
$$= 4 \times s + (-3) \times 1$$
$$= 4s - 3$$

A variable divided by itself is 1.

1. Divide.

a)
$$\frac{12a^{2}}{-6a}$$

$$= \underline{\qquad} \times \frac{a^{2}}{a}$$

$$= \underline{\qquad} \times \frac{a \times a^{1}}{a^{2}}$$

$$= \underline{\qquad}$$

Write as a product of 2 fractions.

Simplify each fraction.

b)	$\frac{9b^2+3b}{3b}$		
	$={3b}$	+ -3b	
	= 		

c)	<u>-14</u>	$\frac{c^2 + 2}{-7c}$				
	=					
	_				~~	Carpot Iga
	elys <u>.</u>		3.233	-	ant v	
	_					

Practice

1. Write the multiplication sentence modelled by each set of tiles.

2. Sketch algebra tiles to multiply. Write the product each time.

a)
$$2s(s+4) =$$

b)
$$t(-2t+3) =$$

3. Multiply.

a)
$$4r(5r - 1)$$

= $(4r)(\underline{\hspace{0.2cm}}) + (4r)(\underline{\hspace{0.2cm}})$
= $\underline{\hspace{0.2cm}}r^2 + (\underline{\hspace{0.2cm}}r)$
= $\underline{\hspace{0.2cm}}$

c)
$$-6t(t-3)$$
 = _____ = ____

d)
$$-8u(-6u + 7)$$
 = ______ = ____

4. Divide.

b)
$$\frac{15W^2}{-3W}$$
 = _____ = ____ =

c)
$$\frac{-28x^2}{-7x}$$
=
=
=
=

5. Divide.

$$= \frac{18y^2 + 12y}{2y}$$

$$= \frac{2y}{2y} + \frac{2y}{2y}$$

$$= \frac{2y}{2y} + \frac{2y}{2y}$$