5.5 Skill Builder

The Distributive Property

We can use this diagram to model 5×24 .

This diagram shows:

$$5 \times 24 = 5 \times (20 + 4)$$

= $(5 \times 20) + (5 \times 4)$
= $100 + 20$
= 120

We multiply the term outside the brackets by each term inside the brackets, then find the sum.

This shows the **distributive property** of multiplication.

Check

1. How does each diagram show the distributive property?

a) 10 5

 10		-		_
	and the		 e gale	-

b) 30 5

2. Use the distributive property to multiply.

a) $7 \times 21 = 7 \times (20 + 1)$ = $(7 \times 20) + (7 \times 1)$ = _____

Multiplying and Dividing Integers

When multiplying or dividing 2 integers, look at the sign of each integer:

- When the integers have the same sign, their product or quotient is positive.
- When the integers have different signs, their product or quotient is negative.

×/÷	(-)	(+)
(-)	(+)	(-)
(+)	(-)	(+)

$$7 \times (-4)$$

$$7 \times (-4) = -28$$

These 2 integers have different signs, so their product is negative.

$$(-12) \div (-3)$$

$$(-12) \div (-3) = 4$$

These 2 integers have the same sign, so their quotient is positive.

When one number is divided by another number, the result is called the quotient.

Check

1. Will the product be positive or negative?

d)
$$(-7) \times (-6)$$

2. Multiply.

a)
$$6 \times 5 =$$

b)
$$4 \times (-10) =$$

c)
$$(-7) \times 3 =$$

d)
$$(-8) \times (-6) =$$

e)
$$12 \times (-5) =$$

f)
$$(-4) \times (-8) =$$

3. Will the quotient be positive or negative?

4. Divide.

a)
$$(-49) \div 7 =$$

b)
$$(-56) \div (-8) =$$

d)
$$81 \div (-9) =$$

e)
$$(-27) \div (-3) =$$

f)
$$(-42) \div 7 =$$

5.5 Multiplying and Dividing a Polynomial by a Constant

FOCUS Use different strategies to multiply and divide a polynomial by a constant.

To multiply 2(4x) with algebra tiles:

There are 8 x-tiles. So, 2(4x) = 8x

Example 1

Using Algebra Tiles to Multiply a Polynomial by a Constant

Find the product: $3(2b^2 - 2b + 1)$

Solution

$$3(2b^2 - 2b + 1)$$

Model 3 rows of 2

______, 2 ______, and 1 🗆.

These tiles represent: $6b^2 - 6b + 3$. So, $3(2b^2 - 2b + 1) = 6b^2 - 6b + 3$

Check

1. Sketch algebra tiles to multiply. Write the product each time.

a)
$$3(4p-3) =$$
 b) $2(-s^2 + s + 3) =$

b)
$$2(-s^2 + s + 3) =$$

When working symbolically, remember the rules for integer multiplication and division.

Example 2

Using the Distributive Property to Multiply a Polynomial by a Constant

Find the product: $-5(4e^2 - 5e + 3)$

Solution

Multiply each term in brackets by -5.

Multiply.

Check

1. Multiply.

a)
$$3(7s^2 + 9)$$

= $3(7s^2) + 3(9)$
= $s^2 +$

Multiply each term in brackets by 3.

Multiply: $3 \times 7 =$ and $3 \times 9 =$

b)
$$-4(5e^2 - 8e)$$
 = _____

Multiply each term in brackets by -4. Multiply.

c)
$$-5(-2d^2 - 3d + 6)$$

d)
$$7(6y^2 - 8y + 9)$$

We can use algebra tiles to divide a polynomial by a constant.

To divide: $(-8x) \div 2$

Arrange 8 into 2 equal rows.

In each row there are 4

So,
$$(-8x) \div 2 = -4x$$

Example 3

Using Algebra Tiles to Divide a Polynomial by a Constant

Find the quotient: $(6s - 9) \div 3$

Solution

$$(6s - 9) \div 3$$

Arrange 6 and 9 into 3 equal rows.

In each row, there are 2 and 3 .

So,
$$(6s - 9) \div 3 = 2s - 3$$

Check

1. Sketch algebra tiles to divide. Write the quotient each time.

a)
$$(3g^2 + 12g) \div 3 =$$

b)
$$(-4b^2 + 6) \div 2 =$$

(4
$$s^2 - 4s + 8$$
) ÷ 4 = _____

c)
$$(4s^2 - 4s + 8) \div 4 =$$
 d) $(-6t^2 + 9t - 9) \div 3 =$

When algebra tiles are not available, or when the divisor is negative, we can use what we already know about division.

In the division sentence $6 \div 3 = 2$, the divisor is 3.

We can write $8x \div 4$ as a fraction: $\frac{8x}{4}$

We write the fraction as a product, then simplify each fraction.

$$\frac{8x}{4} = \frac{8}{4} \times x$$
$$= 2 \times x$$
$$= 2x$$

Example 4

Dividing a Polynomial by a Constant Symbolically

Find the quotient: $\frac{-9v^2+6}{3}$

Solution

$$\frac{-9v^2+6}{3}$$
 Write as the sum of 2 fractions with denominator 3.

$$= \frac{-9v^2}{3} + \frac{6}{3}$$
Simplify the fractions.
$$= \frac{-9}{3} \times v^2 + 2$$
When 2 integers have different signs, the quotient is negative.

$$= \frac{-9}{3} \times v^2 + 2$$
$$= -3 \times v^2 + 2$$
$$= -3v^2 + 2$$

$$= -3v^2 + 2$$

Check

1. Divide.

a)
$$\frac{12r^2+8}{4}$$

Write as the sum of 2 fractions with denominator 4.

Simplify the fractions.

$$=$$
 \times r^2 $+$ \dots

When 2 integers have the same sign, the quotient is _____

=		

Practice

1. Which multiplication sentence does each rectangle represent?

a) ,		m		4		
,						
	4					

$$4(m + 4) = (4 \times \underline{\hspace{1cm}}) + (4 \times \underline{\hspace{1cm}})$$

o)	W	6
5		Lossibi

2. Write the multiplication sentence modelled by each set of tiles.

3. Sketch algebra tiles to multiply. Write the product each time.

a)
$$3(6r-4) =$$

b)
$$2(-2b^2 - b + 3) =$$

4. Multiply.

a)
$$6(-4t^2 + 3)$$

= $6(\underline{\hspace{0.2cm}}) + 6(\underline{\hspace{0.2cm}})$

b)
$$-8(-3k^2 - 2k + 4)$$

5. Which of these quotients is modelled by the tiles below?

a)
$$(15x - 9) \div 3$$

b)
$$(-15x - 9) \div 3$$

c)
$$(-15x + 9) \div 3$$

6. Sketch algebra tiles to divide. Write the quotient each time.

a)
$$(3h^2 - 15h) \div 3 =$$

a)
$$(3h^2 - 15h) \div 3 =$$
 b) $(-2a^2 - 6a + 4) \div 2 =$

7. Divide.

a)
$$\frac{-10z^2 + 15}{5}$$

$$= \frac{}{5} + \frac{}{5}$$

$$= \times z^2 + \underline{}$$

$$= \underline{}$$

$$= \underline{}$$

b)
$$\frac{7x^2 - 7x + 21}{-7}$$
=
=
=
=
=