5.3 Adding Polynomials

FOCUS Use different strategies to add polynomials.

Example 1

Adding Polynomials with Algebra Tiles

Use algebra tiles to model $(3s^2 + 2s - 6) + (-s^2 - 2s + 1)$. Write an addition sentence.

Solution

Model each polynomial.

$$3s^2 + 2s - 6$$

Combine the tiles.

Group matching tiles.

Remove zero pairs.

The remaining tiles are:

They represent: $2s^2 - 5$

The addition sentence is: $(3s^2 + 2s - 6) + (-s^2 - 2s + 1) = 2s^2 - 5$

Check

- **1.** Sketch algebra tiles to model each sum. Then write the sum.
 - **a)** (6p + 4) + (-2p + 1)

Remaining tiles: ______ So, (6p + 4) + (-2p + 1) = _____

b) $(2x^2 - x + 1) + (x^2 - 3)$

c) $(3e^2 + 6e - 5) + (-4e^2 - 3e + 8)$

Remaining tiles: ______ So, $(3e^2 + 6e - 5) + (-4e^2 - 3e + 8) =$

Algebra tiles are not always available.

To add polynomials without tiles:

- remove the brackets
- add the coefficients of like terms

Example 2

Adding Polynomials Symbolically

Add:
$$(3c^2 + 5c - 6) + (2c^2 - 3c + 4)$$

Solution

$$(3c^2 + 5c - 6) + (2c^2 - 3c + 4)$$

Remove the brackets.

$$= 3c^2 + 5c - 6 + 2c^2 - 3c + 4$$

Group like terms.

3c² and 2c² are like terms.

$$= 3c^2 + 2c^2 + 5c - 3c - 6 + 4$$

Add the coefficients of like terms.

Check

1. Add.

a)
$$(7g - 8) + (3g + 1)$$

= $7g - 8 + 3g + 1$
= $7g + 3g - 8 + 1$
=

b)
$$(2a^2 - 9a) + (-5a^2 + 12a)$$

= _____
= ___

c)
$$(-c^2 + 11c - 3) + (4c^2 + 5)$$

= _____
= ___

Remove the brackets.

Group like terms.

Add the coefficients of like terms.

$$7 + 3 = 2$$
 and $-8 + 1 = 2$

Remove the brackets.

Group like terms.

Add the coefficients of like terms.

Recall: $-c^2$ has coefficient -1.

We can also add 2 polynomials by aligning like terms vertically.

Example 3 Adding Polynomials Vertically

Add:
$$(2m + 9) + (3m^2 + m - 14)$$

Solution

To add the polynomials, remove the brackets and align like terms vertically.

In $3m^2 + m - 14$, the term m has coefficient 1, so write m as 1m.

$$2m + 9$$

$$+ 3m^{2} + 1m - 14$$

$$3m^{2} + 3m - 5$$

 $+3m^2 + 1m - 14$ Add the coefficients of like terms.

So,
$$(2m + 9) + (3m^2 + m - 14) = 3m^2 + 3m - 5$$

1. Add vertically.

a)
$$(2x + 3) + (4x + 8)$$

 $2x + 3$
 $+ 4x + 8$
 $x + 4$

b)
$$(5p^2 + 12) + (-2p^2 + 3p - 7)$$

 $5p^2 + 12$
 $+ -2p^2 + 3p - 7$

c)	$(-6b^2 -$	- 2b -	+ (8 +	$(9b - b^2 -$	19)

Practice

1. Write the addition sentence modelled by each set of tiles. Use the variable *x*.

2. Sketch algebra tiles to model each sum. Then write the sum.

a)
$$(-5w + 8) + (7w - 3) =$$

Remaining tiles:

b)
$$(-6t^2 - 3t + 2) + (4t^2 - t + 1) =$$

Remaining tiles: