5.2 Skill Builder

Modelling Integers

One represents +1.

One ■ represents –1.

One and one combine to model 0.

We call this a **zero pair.**

We can model any integer in many ways.

Each set of tiles below models +3.

Each pair of 1 and 1 makes a zero pair.

Check

1. Write the integer modelled by each set of tiles.

a) 🔲 🗎 🗎 🖺 🗒

b) 🗆 🗎

c)

d) 🗆 🗎 🗎

5.2 Like Terms and Unlike Terms

FOCUS Simplify polynomials by combining like terms.

These are all zero pairs:

and

and

We can use zero pairs to simplify algebraic expressions.

Example 1

Combining Like Tiles and Removing Zero Pairs

Simplify this tile model.

Write the polynomial that the remaining tiles represent.

Solution

Group like tiles.

Remove zero pairs.

The tiles that remain are:

They represent: $x^2 + x - 2$

Matching tiles have the same size and shape.

When there is only 1 of a type of tile, we omit the coefficient 1.

1. Simplify each tile model.

Write the polynomial that the remaining tiles represent.

Remaining tiles:

Polynomial: ___

Remaining tiles:

Polynomial: __

Remaining tiles:

Polynomial:

Terms that can be represented by matching tiles are called **like terms**.

Like terms:

$$x^2$$
 and $-2x^2$

$$4s \text{ and } -s \qquad 6 \text{ and } -2$$

Unlike terms:

$$3s$$
 and s^2

$$2x$$
 and -5

$$3d^2$$
 and 7

We can **simplify a polynomial** by adding the coefficients of like terms.

To simplify -5x + 2x, add the integers: -5 + 2 = -3

So,
$$-5x + 2x = -3x$$

Example 2 | Simplifying a Polynomial Symbolically

Simplify:

a)
$$3a + 6 + a - 4$$

b)
$$-x^2 + 4x - 5 + 3x^2 - 4x + 1$$

Solution

a)
$$3a + 6 + a - 4$$

= $3a + 1a + 6 - 4$
= $4a + 2$

Group like terms. Add the coefficients of like terms.

b)
$$-x^2 + 4x - 5 + 3x^2 - 4x + 1$$
 Group like terms.
 $= -x^2 + 3x^2 + 4x - 4x - 5 + 1$ Add the coefficien
 $= 2x^2 + 0x - 4$ We omit a term

Add the coefficients of like terms.

We omit a term when its coefficient is 0.

Check

1. Simplify each polynomial.

a)
$$5d + 2 + 3d - 1$$

= $5d + 3d + 2 - 1$
= $d + 3d + 2 - 1$

Group like terms.

Add the coefficients of like terms:

$$5 + 3 =$$
 and $2 + (-1) =$

b) $2a^2 - 3a + 5a^2 + 7a$

Group like terms.

Add the coefficients of like terms:

c) $-x^2 + 4x - 5 + 2x^2 + x + 3$

We omit the coefficient when it is 1.

d)
$$2x^2 + 6x + 7 - 2x^2 + 7x - 11$$

Practice

1	\//hat	ic tha	coefficient	of	oach	torm?
	vviial	12 1116	coemcient	OI	eacn	term?

- **a)** $2x^2$
- **b)** 6w
- **c)** -3x

- **d)** 7t
- **e)** b
- **f)** -s

2. a) Which of these terms are like $3z^2$?

- $5z -z^2 -9 -6z 2z^2 -11 -4z^2$

 $3z^2$ has variable ____ and exponent ____.

Find all terms with the same variable and exponent:

- **b)** Which of these terms are like -5x?

 - $-4x -3x^2 -2 7x 5x^2$

-5x has variable ____ and exponent ___

Find all terms with the same variable and exponent:

3. Simplify each tile model.

Write the polynomial that the remaining tiles represent.

Remaining tiles:

Polynomial:

Remaining tiles:

Polynomial:

Remaining tiles:

Polynomial:

4. Add in	tegers to	combine	like	terms.
-----------	-----------	---------	------	--------

a)
$$-3c + 5c$$
 $-3 + 5 =$ $-3c + 5c =$

c)
$$-2x^2 + 7x^2 + \dots + \dots = \dots$$

b)
$$4s - s$$
 $4 + (-1) =$ _____

d)
$$8e^2 - 8e^2$$

5. Simplify each polynomial.

b)
$$7c^2 - 6c - 4c^2 + c$$
=
=

c)
$$11 - 9v + v^2 + 2 - v$$
=
=

d)
$$-7f^2 + 12f - 2 - 3f^2 - 3f + 5$$

$$= \underline{\qquad \qquad }$$

$$= \underline{\qquad \qquad }$$

Group like terms.

Add the coefficients of like terms.

Group like terms.

Add the coefficients of like terms.

We usually write a polynomial so the exponents of the variable decrease from left to right.

A polynomial in simplified form is equal to the original polynomial.

6. Identify and explain any errors you find.

a)
$$3x + 2 = 5x$$

b)
$$5s + 3s = 8s^2$$

c)
$$x^2 - x^2 = 0$$