What You'll Learn

- Recognize, write, describe, and classify polynomials.
- Represent polynomials using tiles, pictures, and algebraic expressions.
- Add and subtract polynomials.
- Multiply and divide a polynomial by a monomial.

Why It's Important

Polynomials are used by

- homeowners to calculate mortgage and car payments
- computer technicians to encode information, such as PIN numbers for ATM machines and debit cards

Key Words

term

monomial

variable term

binomial

constant term

trinomial

variable

simplify a polynomial

coefficient of the variable

like terms

polynomial

unlike terms

degree of a polynomial

distributive property

5.1 Skill Builder

Modelling Expressions

We can use algebra tiles to model an expression.

One \square represents +1. One \square represents -1.

One represents any variable, such as x or n.

One represents -x or -n.

There are 2 ______.

There is 1

They represent 2x.

It represents -1.

So, the tiles represent the expression 2x - 1.

There are 3

They represent -3a.

There are 2 .

They represent +2.

So, the tiles represent the expression -3a + 2.

We can use any letter as the variable.

Check

1. Which expression does each set of tiles represent?

a) _____

2. Sketch algebra tiles to model each expression.

a) s + 4

b) 5*b* - 3

c) -4n + 5

d) -6w - 1

5.1 Modelling Polynomials

FOCUS Model, write, and classify polynomials.

Some expressions contain x^2 terms.

We use to represent x^2 .

When the variable is n, the tile is called the n²-tile.

We use

to represent $-x^2$.

For the expression $4x^2 + 3x - 1$:

In the term 3x, the **variable** is x and the **coefficient of the variable** is 3.

An algebraic expression like this one is also called a polynomial.

Example 1

Modelling Polynomials with Algebra Tiles

Use algebra tiles to model each polynomial.

a) $-4t^2$

b) 2n - 5

Solution

a) To represent $-4t^2$, use 4

b) To represent 2*n*, use 2

- 1. Sketch algebra tiles to model each polynomial.
 - **a)** -3

b) 2x + 3

c) $2e^2 - e + 2$

d) $-3d^2 + 2d - 5$

Example 2 Recognizing the Same Polynomials in Different Variables

Which of these polynomials can be represented by the same algebra tiles?

a)
$$2x^2 + 7x - 4$$

b)
$$-4 + 2b^2 - 7b$$

c)
$$7s - 4 + 2s^2$$

Solution

Select the tiles that match each term.

a)
$$2x^2 + 7x - 4$$

b)
$$-4 + 2b^2 - 7b$$

c)
$$7s - 4 + 2s^2$$

The variable used to name a tile does not matter. In parts a and c, the same algebra tiles are used. Since $2x^2 + 7x - 4$ and $7s - 4 + 2s^2$ can be represented by the same tiles, the expressions represent the same polynomial. The order in which the terms are written does not matter.

Check

1. Which of these polynomials can be represented by the same algebra tiles?

a)
$$3s^2 - 2s + 5$$

b)
$$5 - 3a^2 - 2a$$

c)
$$-2c + 5 - 3c^2$$

		그렇게 하기 하는 사람이 있는 바람들이 그 회에는 어떤 사람들이 있다면 하는 것이다.
So,	and	represent the same polynomial.

There are different **types** of polynomials, depending on the number of terms.

The **degree of a polynomial** tells you the greatest exponent of any term.

Туре	Number of Terms	Example	Model	Degree	
Monomial	1	2s ²		2	
		-2 <i>n</i>		1 sbeide	
		4		2	
Binomial 2	$x^2 + 3$		2		
		2a - 1		1	
		$-2b^2 + 3b$		2	
Trinomial	3	$-c^2 + 4c - 2$		2	

A monomial has 1 type of tile.

A constant term has degree 0.

A binomial has 2 different types of tiles.

A trinomial has 3 different types of tiles. An algebraic expression that contains a term with a variable in the denominator, such as $\frac{5}{r}$, or the square root of a variable, such as \sqrt{n} , is not a polynomial.

Practice

1.	Sketch	algebra	tiles to	model	each	polynomial	

a)
$$a^2 + 6$$

b)
$$y^2 - y + 3$$

c)
$$-2m^2 + 3m - 4$$

d)
$$2x^2 + 5x + 4$$

2. Is the polynomial a monomial, binomial, or trinomial?

a) -7t

The polynomial has ____ term, so it is a

b) $8d^2 + 7$

The polynomial has ____ terms, so it is a _____

c) $s^2 + 5s - 6$ The polynomial has ____ terms, so it is a ____

d) 4t - 12

The polynomial has terms, so it is a

e) -15

The polynomial has ____ term, so it is a

3. Name the degree of each polynomial.

a) $5a^2 - 3a + 6$ The term with the greatest exponent is $5a^2$.

It has exponent _____. So, the polynomial has degree .

b) 4b - 6

The term with the greatest exponent is . .

It has exponent .

So, the polynomial has degree .

c) $4d^2 - 3d$

The term with the greatest exponent is _____.

It has exponent _____.

So, the polynomial has degree .

-4 can be written as -4x—.

So, the polynomial has degree

b) Use the variable *n*.

c) Use the variable *p*.

5. Choose a set of tiles from question 4. Write another polynomial that can be represented by the same set of tiles.

6. Identify the polynomials that can be represented by the same set of algebra tiles.

a)
$$x^2 + 3x - 1$$

b) $4r^2 - 5r + 9$

c)
$$9 + 4z^2 - 5z$$

d) $3s + 1 + s^2$

Parts ____ and ____ use the same algebra tiles.

So, _____ and ____ both represent the same polynomial.