3.5 Skill Builder

Dividing Fractions

Here are two ways to divide $2 \div \frac{2}{3}$.

• Use a number line.

How many groups of two-thirds are there in 2?

There are 3 groups of two-thirds in 2. So, $2 \div \frac{2}{3} = 3$

• Multiply by the reciprocal of $\frac{2}{3}$.

 $2 \div \frac{2}{3}$ The reciprocal of $\frac{2}{3}$ is $\frac{3}{2}$.

- $=2\times\frac{3}{2}$
- $=\frac{2}{1}\times\frac{3}{2}$

 $=\frac{2^1\times 3}{1\times 2^1}$ Look for common factors.

= 3

Check

1. Find each quotient. Use any method.

a)
$$2 \div \frac{1}{6} =$$

b)
$$\frac{1}{3} \div 2 =$$

d)
$$4 \div \frac{2}{3} = 4 \times$$

3.5 Dividing Rational Numbers

FOCUS Divide rational numbers.

Division is the opposite of multiplication. So, the sign rules for dividing rational numbers are the same as those for multiplying rational numbers.

÷	(-)	(+)	
(-)	(+)	(-)	
(+)	(-)	(+)	

Example 1

Dividing Rational Numbers in Fraction Form

Divide: $\frac{3}{4} \div \left(-\frac{9}{8}\right)$

Solution

$$\frac{3}{4} \div \left(-\frac{9}{8}\right)$$

The fractions have different signs, so the quotient is negative.

$$\frac{3}{4} \div \left(-\frac{9}{8}\right) = \frac{3}{4} \times \left(-\frac{8}{9}\right)$$
 Multiply by the reciprocal.

$$= \frac{3^1 \times (-8)^{-2}}{4^1 \times 9^3}$$
$$= \frac{1 \times (-2)}{1 \times 3}$$

 $= \frac{3^{1} \times (-8)^{-2}}{4^{1} \times 9^{3}}$ Look for common factors.

Dividing by
$$-\frac{9}{8}$$
 is the same as multiplying by $-\frac{8}{9}$.

So,
$$\frac{3}{4} \div \left(-\frac{9}{8}\right) = -\frac{2}{3}$$

Check

1. Divide.

a)
$$\frac{2}{5} \div \left(-\frac{3}{4}\right)$$

$$= \frac{2}{5} \times \underline{\qquad}$$

$$= \frac{2 \times \underline{\qquad}}{5 \times \underline{\qquad}}$$

b)
$$\left(-\frac{2}{9}\right) \div \left(-\frac{4}{7}\right)$$

$$= \times$$

$$= \frac{\times}{\times}$$

Example 2

Dividing Rational Numbers in Decimal Form

Divide:

 $(-5.1) \div 3$

Solution

$$(-5.1) \div 3$$

Since the signs are different, the quotient is negative.

Divide integers: $(-51) \div 3 = -17$

Estimate to place the decimal point.

-5.1 is close to -6, so $(-5.1) \div 3$ is close to $(-6) \div 3 = -2$

So, $(-5.1) \div 3 = -1.7$

Check

1. Divide: $(-7.5) \div 5$

 $(-7.5) \div 5$

Divide integers: ____ ÷ __ = ____

Estimate to place the decimal point.

 $(-7.5) \div 5$ is about ___ \div __ = ___

So, $-7.5 \div 5 =$

Think: Is the quotient positive or negative?

Practice

1. Is the quotient positive or negative?

a) $(-7.5) \div (-3)$

Same sign; the quotient is ______.

b) $8.42 \div (-2)$

; the quotient is _____

c) $\left(-\frac{9}{10}\right) \div \frac{3}{5}$

_____; the quotient is ______.

d) $(-16) \div \left(-\frac{4}{5}\right)$

_____; the quotient is ______.

2. Which of these expressions have the same answer as $\left(-\frac{3}{10}\right) \div \frac{2}{5}$?

a)	3	~	5
a,	10	^	$\overline{2}$

____, since _____

b)
$$-\frac{3}{10} \div \left(-\frac{2}{5}\right)$$

____, since _____

c)
$$\frac{2}{5} \div \left(-\frac{3}{10}\right)$$

____, since

$$\mathbf{d)} \; \frac{3}{10} \div \left(-\frac{2}{5} \right)$$

____, since _____

3. Find each quotient.

a)
$$\left(-\frac{2}{3}\right) \div \frac{7}{6}$$

$$=\left(-\frac{2}{3}\right)\times$$

b)
$$\left(-\frac{15}{16}\right) \div \left(-\frac{5}{8}\right)$$

$$= \left(-\frac{15}{16}\right) \times$$

=

4. Divide.

a)
$$\left(-\frac{8}{9}\right) \div \frac{1}{3}$$

$$= \left(-\frac{8}{9}\right) \times \underline{}$$

$$= \frac{\times}{\times}$$

$$= \frac{\times}{\times}$$

Think: Is the quotient positive or negative?

- **b)** $\left(-\frac{2}{5}\right) \div \left(-\frac{3}{7}\right)$ $= \times$ $= \frac{\times}{\times}$
- **5.** Use integers to determine each quotient. Estimate to place the decimal point in the answer.

So, $(-2.94) \div 0.7 = ____$

a)
$$(-2.94) \div 0.7$$

 $(-2.94) \div 0.7$
The quotient is ______.
To find $(-2.94) \div 0.7$, divide: _____ \div ___ = ____.

b)
$$(-5.52) \div (-0.8)$$

 $(-5.52) \div (-0.8)$
The quotient is _____.
To find $(-5.52) \div (-0.8)$, divide: _____ \div ___ = ____.
 $(-5.52) \div (-0.8)$ is about _____ \div ___ = ___.
So, $(-5.52) \div (-0.8)$ = _____.