3.4 Skill Builder

Writing a Fraction in Simplest Form

A fraction is in simplest form when the only common factor of the numerator and denominator is 1. For example, $\frac{5}{6}$ is in simplest form.

Writing a Fraction in Simplest Form

Look for common factors of the numerator and denominator.

Divide the numerator and denominator by common factors until you cannot go any further.

Write $\frac{24}{30}$ in simplest form.

Factors of 24: 1, 2, 3, 4, **6**, 8, 12, 24 Factors of 30: 1, 2, 3, 5, **6**, 10, 15, 30

Divide the numerator and the denominator by 6.

$$\underbrace{\frac{24}{30}}_{\div 6} = \underbrace{\frac{4}{5}}$$

 $\frac{4}{5}$ is the simplest form of $\frac{24}{30}$.

Check

1. Write each fraction in simplest form.

a)
$$\frac{10}{15} = \frac{\div 5}{\div 5}$$

Divide the numerator and the denominator by 5.

b)
$$\frac{14}{20} =$$

Divide the numerator and the denominator by _____

c)
$$\frac{8}{12} =$$

Divide the numerator and the denominator by _____

d)
$$\frac{12}{18}$$

Divide the numerator and the denominator by _____.

Multiplying Proper Fractions

When multiplying fractions, we multiply the numerators, and we multiply the denominators.

$$\frac{2}{5} \times \frac{3}{8} = \frac{2 \times 3}{5 \times 8}$$

$$= \frac{6}{40}, \text{ or } \frac{3}{20}$$

To simplify, look for common factors before multiplying.

$$\frac{5}{12} \times \frac{8}{15} = \frac{5 \times 8}{12 \times 15}$$
$$= \frac{\cancel{8}^{1} \times \cancel{8}^{2}}{\cancel{12}^{3} \times \cancel{15}^{3}}$$
$$= \frac{1 \times 2}{3 \times 3}$$
$$= \frac{2}{9}$$

A common factor of 5 and 15 is 5. A common factor of 8 and 12 is 4. $5 \div 5 = 1$ $8 \div 4 = 2$

Check

1. Find each product.

a)
$$\frac{3}{4} \times \frac{2}{5}$$

Multiply the numerators and multiply the denominators.

$$=\frac{3\times2}{4\times5}$$

A common factor of 2 and 4 is . .

$$=\frac{3\times2-}{4-\times5}$$

b) $\frac{9}{14} \times \frac{7}{3}$ Multiply the numerators and multiply the denominators.

2. Multiply.

a)
$$\frac{6}{7} \times \frac{3}{4} = \frac{\times}{\times \times}$$
 b) $\frac{4}{5} \times \frac{15}{14} =$

b)
$$\frac{4}{5} \times \frac{15}{14} =$$

c)
$$\frac{12}{5} \times \frac{5}{18} =$$

Multiplying Mixed Numbers

Mixed numbers combine whole numbers with fraction parts.

To multiply, write the mixed numbers in fraction form.

Multiply:
$$2\frac{1}{4} \times \frac{2}{3}$$

Rewrite
$$2\frac{1}{4}$$
 as an improper fraction: $2\frac{1}{4} = \frac{2 \times 4 + 1}{4}$

So,
$$2\frac{1}{4} \times \frac{2}{3} = \frac{9}{4} \times \frac{2}{3}$$

 $= \frac{9 \times 2}{4 \times 3}$
 $= \frac{9^3 \times 2^1}{4^2 \times 3^1}$
 $= \frac{3}{2}$, or $1\frac{1}{2}$

So, $2\frac{1}{4} \times \frac{2}{3} = \frac{9}{4} \times \frac{2}{3}$ Multiply the numerators and multiply the denominators.

Look for common factors in numerator and denominator.

Check

1. Write each mixed number as an improper fraction.

- **a)** $3\frac{4}{5}$
 - =
- **b)** $3\frac{2}{7}$
 - entropy and the
- **c)** $1\frac{5}{12}$

2. Multiply.

a) $3\frac{2}{5} \times \frac{1}{4}$ $= \frac{17}{5} \times \frac{1}{4}$ $= \frac{\times}{\times}$

Rewrite $3\frac{2}{5}$ as an improper fraction: $3\frac{2}{5} = \frac{17}{5}$

Multiply the numerators and multiply the denominators.

b) $1\frac{1}{2} \times 1\frac{1}{3}$

2 3 = Rewrite _____ and _____as improper fractions.

Multiply the numerators and multiply the denominators.

=

Look for common factors in numerator and denominator.

=

3.4 Multiplying Rational Numbers

FOCUS Multiply rational numbers.

To predict the sign of the product of two rational numbers, use the sign rules for multiplying integers:

×	(-)	(+)
(-)	(+)	(-)
(+)	(-)	(+)

- If the signs are the same, the answer is positive.
- If the signs are different, the answer is negative.

Example 1

Multiplying Rational Numbers in Fraction Form

Multiply: $\left(-\frac{2}{3}\right)\left(-\frac{6}{7}\right)$

Solution

Predict the sign of the product:

Since the fractions have the same sign, their product is positive.

$$\left(-\frac{2}{3}\right)\left(-\frac{6}{7}\right) = \frac{(-2) \times (-6)^{-2}}{3^{1} \times 7}$$

$$= \frac{(-2) \times (-2)}{1 \times 7}$$

$$= \frac{4}{7}$$

$$So_{x}\left(-\frac{2}{7}\right)\left(-\frac{6}{7}\right) = \frac{4}{7}$$

Check

- 1. Find each product.
 - **a)** $\frac{1}{5} \times \left(-\frac{3}{5}\right)$

The fractions have _____so their product is

=

b)
$$\left(-\frac{9}{11}\right)\left(-\frac{7}{12}\right)$$

The fractions have ______, so their product is ______.

A common factor of _____ and 12 is _____

= ____

Example 2

Multiplying Rational Numbers in Mixed Number Form

Multiply: $\left(-2\frac{1}{5}\right)\left(-1\frac{3}{4}\right)$

Solution

$$\left(-2\frac{1}{5}\right)\left(-1\frac{3}{4}\right)$$

Write each mixed number as an improper fraction.

$$^{-2}\frac{1}{5} = \frac{10}{5} + \frac{1}{5} = \frac{11}{5}$$

$$1\frac{3}{4} = \frac{4}{4} + \frac{3}{4} = \frac{7}{4}$$

So,
$$\left(-2\frac{1}{5}\right)\left(-1\frac{3}{4}\right) = \left(-\frac{11}{5}\right)\left(-\frac{7}{4}\right)$$

= $\frac{(-11)\times(-7)}{5\times4}$
= $\frac{77}{20}$, or $3\frac{17}{20}$

The numbers have the same sign: the product is positive.

$$\boxed{\frac{77}{20} = \frac{60}{20} + \frac{17}{20} = 3\frac{17}{20}}$$

Check

1. Find each product.

a)
$$\left(-1\frac{1}{4}\right) \times \frac{6}{7}$$

$$= \left(-\frac{}{4}\right) \times \frac{6}{7}$$

$$= \frac{\times}{\times}$$

$$= \frac{\times}{\times}$$

b)
$$\left(-2\frac{4}{5}\right)\left(-2\frac{3}{4}\right)$$

$$=\left(-\frac{5}{5}\right)\left(-\frac{3}{4}\right)$$

$$=\frac{\times}{\times}$$

$$=$$

To multiply rational numbers in decimal form:

- Use the sign rules for integers to find the sign of the product.
- Multiply as you would with whole numbers; estimate to place the decimal point.

Example 3

Multiplying Rational Numbers to Solve a Problem

On March 6, 2009, the price of a share in Bank of Montreal changed by -\$3.05. Joanne owns 50 shares. By how much did the shares change in value that day?

Solution

The change in value is: $50 \times (-3.05)$

Multiply the integers, then estimate to place the decimal point.

$$50 \times (-305) = -15250$$

Estimate to place the decimal point.

Since -3.05 is close to -3,

 $50 \times (-3.05)$ is close to $50 \times (-3)$, or -150.

So,
$$50 \times (-3.05) = -152.50$$

The shares changed in value by -\$152.50 that day.

The product is negative.

Check

1. On March 13, 2009, the price of a share in Research in Motion changed by -\$1.13. Tania owns 80 shares. By how much did those shares change in value that day?

The change in value is: $80 \times (-1.13)$

The product is

To find 80 \times (-1.13), multiply: ____ \times ____

80 × _____ = ___

Estimate: $80 \times (-1.13)$ is about ____ × ___ = ___

So, $80 \times (-1.13) =$

The shares changed in value by that day.

Practice

1. Is the product positive or negative?

a) $(-2.5) \times 3.6$

different signs; the product is _____

b) $(-4.1) \times (-6.8)$

the same sign; the product is ______.

c) $\left(-\frac{3}{4}\right)\left(-\frac{7}{9}\right)$

_____; the product is ______

d) $\left(-2\frac{1}{3}\right) \times 6\frac{1}{2}$

_____; the product is ______

2. Which of these expressions have the same product as $\frac{5}{8} \times \left(-\frac{7}{3}\right)$? Why?

a) $\left(-\frac{7}{3}\right) \times \frac{5}{8}$ _____, since _____

b) $\left(-\frac{5}{8}\right)\left(-\frac{7}{3}\right)$

_____, since _____

c) $\frac{7}{3} \times \frac{5}{8}$ _____, since _____

d) $\frac{7}{3} \times \left(-\frac{5}{8}\right)$

_____, since _____

3. Find each product.

Think: Is the product positive or negative?

a) $\frac{2}{7} \times \left(-\frac{5}{6}\right)$

 $\frac{2}{7} \times \left(-\frac{5}{6}\right) =$

b) $\left(-\frac{4}{5}\right)\left(-\frac{11}{12}\right)$

4. Find each product.

a)
$$\left(-\frac{8}{9}\right) \times 1\frac{1}{2}$$

$$\left(-\frac{8}{9}\right) \times 1\frac{1}{2} = \left(-\frac{8}{9}\right) \times \frac{}{2}$$

$$= \frac{}{}$$

$$= \frac{}{}$$

b)
$$\left(-2\frac{5}{6}\right)\left(-1\frac{1}{5}\right)$$
 $\left(-2\frac{5}{6}\right)\left(-1\frac{1}{5}\right) = \left(-\frac{1}{6}\right)\left(-\frac{1}{5}\right)$ $=$ $=$ $=$ $=$ $=$

5. Multiply.

a)
$$0.4 \times (-3.2)$$

b)
$$(-3.03) \times (-0.7)$$

To find $(-3.03) \times (-0.7)$, multiply: _____ \times ___ = ____ $(-3.03) \times (-0.7)$ is about (____) \times (____) = ____ So, $(-3.03) \times (-0.7)$ =

6. On a certain day, the temperature changed by an average of -2.2°C/h. What was the total temperature change in 8 h?

The total change in temperature is: _____ × ______

The product is _____.

To find _____, multiply: _____ × ___ = ____.

8 × (-2.2) is about _____ × ___ = ___.

So, 8 × (-2.2) = ____.

The temperature ____ by _____°C in 8 h.