2.5 Skill Builder

Grouping Equal Factors

In multiplication, you can group equal factors.

For example:

$$3 \times 7 \times 7 \times 3 \times 7 \times 7 \times 3$$

= $3 \times 3 \times 3 \times 7 \times 7 \times 7 \times 7$

 $3^3 \times 7^4$

Group equal factors.

Write repeated multiplication as powers.

Order does not matter in multiplication.

Check

1. Group equal factors and write as powers.

b) $2 \times 5 \times 2 \times 5 \times 2 \times 5 \times 2 \times 5 =$

Multiplying Fractions

To multiply fractions, first multiply the numerators, and then multiply the denominators.

$$\frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} = \frac{2 \times 2 \times 2 \times 2}{3 \times 3 \times 3 \times 3}$$

$$2^4$$

Write repeated multiplication as powers.

There are 4 factors of 2, and 4 factors of 3.

Check

1. Multiply the fractions. Write as powers.

a)
$$\frac{3}{4} \times \frac{3}{4} \times \frac{3}{4} =$$

b)
$$\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$$

2.5 Exponent Laws II

FOCUS Understand and apply exponent laws for powers of: products; quotients; and powers.

Multiply $3^2 \times 3^2 \times 3^2$.

$$3^2 \times 3^2 \times 3^2 = 3^{2+2+2}$$

 $= 3^6$

Use the exponent law for the product of powers.

Add the exponents.

We can write repeated multiplication as powers.

So,
$$3^2 \times 3^2 \times 3^2$$

3 factors of (3²)

The base is 3^2 .

This is also a power.

$$= (3^2)^3$$

= 36

$$2 \times 3 = 6$$

We write:
$$(3^2)^3 = 3^2 \times 3^6$$

Look at the pattern in the exponents.

Exponent Law for a Power of a Power

To raise a power to a power, multiply the exponents.

For example: $(2^3)^5 = 2^3 \times 5$

Example 1 Simplifying a Power of a Power

Write as a power.

a)
$$(3^2)^4$$

b)
$$[(-5)^3]^2$$

c)
$$-(2^3)^4$$

Solution

Use the exponent law for a power of a power: multiply the exponents.

a)
$$(3^2)^4 = 3^2 \times 4$$

= 3^8

b)
$$[(-5)^3]^2 = (-5)^3 \times 2$$
 The base is -5 .
= $(-5)^6$

c)
$$-(2^3)^4 = -(2^3 \times 4)$$
 The base is 2.
= -2^{12}

1. Write as a power.

b)
$$[(-2)^5]^3 = (-2)$$
_____ = (-2) ____

c)
$$-(5^4)^2 = -(5_{---})$$

= -5_{---}

Multiply $(3 \times 4)^2$.

The base of the power is a product: 3×4

Write as repeated multiplication.

$$(3 \times 4)^2 = (3 \times 4) \times (3 \times 4)$$

$$= 3 \times 4 \times 3 \times 4$$

$$= (3 \times 3) \times (4 \times 4)$$
2 factors of 3 2 factors of 4
$$= 3^2 \times 4^2$$

Remove the brackets. Group equal factors. Write as powers.

So,
$$(3 \times 4)^2 = 3^2 \times 4^2$$

power product power

Exponent Law for a Power of a Product

The power of a product is the product of powers.

For example: $(2 \times 3)^4 = 2^4 \times 3^4$

Example 2

Evaluating Powers of Products

Evaluate.

a)
$$(2 \times 5)^{2}$$

b)
$$[(-3) \times 4]^2$$

Solution

Use the exponent law for a power of a product.

a)
$$(2 \times 5)^2 = 2^2 \times 5^2$$

= $(2)(2) \times (5)(5)$
= 4×25
= 100

b)
$$[(-3) \times 4]^2 = (-3)^2 \times 4^2$$

= $(-3)(-3) \times (4)(4)$
= 9×16
= 144

Or, use the order of operations and evaluate what is inside the brackets first.

a)
$$(2 \times 5)^2 = 10^2$$

= 100

b)
$$[(-3) \times 4]^2 = (-12)^2$$

= 144

Check

1. Write as a product of powers.

a)
$$(5 \times 7)^4 = \underline{\hspace{1cm}} \times \underline{\hspace{1cm}}$$

b)
$$(8 \times 2)^2 =$$
____ \times ____

2. Evaluate.

a)
$$[(-1) \times 6]^2 =$$
_____2

b)
$$[(-1) \times (-4)]^3 = \underline{\hspace{1cm}}^3 = \underline{\hspace{1cm}}^3$$

Evaluate
$$\left(\frac{3}{4}\right)^2$$
.

The base of the power is a quotient: $\frac{3}{4}$

Write as repeated multiplication.

$$\left(\frac{3}{4}\right)^2 = \left(\frac{3}{4}\right) \times \left(\frac{3}{4}\right)$$

$$= \frac{3}{4} \times \frac{3}{4}$$

$$= \frac{3 \times 3}{4 \times 4}$$

Multiply the fractions.

 $=\frac{3^2}{4^2}$ power

Write repeated multiplication as powers.

So,
$$\left(\frac{3}{4}\right)^2 = \frac{3^2}{4^2}$$
 quotient power

Exponent Law for a Power of a Quotient

The power of a quotient is the quotient of powers. $(2)^4$

For example:
$$\left(\frac{2}{3}\right)^4 = \frac{2^4}{3^4}$$

Example 3

Evaluating Powers of Quotients

Evaluate.

a)
$$[30 \div (-5)]^2$$

b)
$$\left(\frac{20}{4}\right)^2$$

Solution

Use the exponent law for a power of a quotient.

a)
$$[30 \div (-5)]^2 = \left(\frac{30}{-5}\right)^2$$

$$= \frac{30^2}{(-5)^2}$$

$$= \frac{900}{25}$$

b)
$$\left(\frac{20}{4}\right)^2 = \frac{20^2}{4^2}$$

$$= \frac{400}{16}$$

$$= 25$$

Or, use the order of operations and evaluate what is inside the brackets first.

a)
$$[30 \div (-5)]^2 = (-6)^2$$

b)
$$\left(\frac{20}{4}\right)^2 = 5^2$$

Check

1. Write as a quotient of powers.

a)
$$(\frac{3}{4})^5 =$$

b)
$$[1 \div (-10)]^3 =$$

2. Evaluate.

a)
$$[(-16) \div (-4)]^2$$

b)
$$\left(\frac{36}{6}\right)^3 =$$

You can evaluate what is inside the brackets first.

Practice

1. Write as a product of powers.

a)
$$(5 \times 2)^4 = 5 - \times 2 - \times 2$$

b)
$$(12 \times 13)^2 =$$

c)
$$[3 \times (-2)]^3 =$$

d)
$$[(-4) \times (-5)]^5 =$$

2. Write as a quotient of powers.

a)
$$(5 \div 8)^0 =$$

b)
$$[(-6) \div 5]^7 =$$

c)
$$\left(\frac{3}{5}\right)^2 =$$

d)
$$\left(\frac{-1}{-2}\right)^3 =$$

3. Write as a power.

a)
$$(5^2)^3 = 5 - \times -$$

b)
$$[(-2)^3]^5 = (-2)$$

d)
$$(8^0)^3 =$$

4. Evaluate.

a)
$$[(6 \times (-2)]^2 =$$

b)
$$-(3 \times 4)^2 = -(\underline{\hspace{1cm}}) - \underline{\hspace{1cm}}$$

c)
$$\left(\frac{-8}{-2}\right)^2 =$$

d)
$$(10 \times 3)^1 =$$

e)
$$[(-2)^1]^2 =$$
=
=
=

f)
$$[(-2)^1]^3 =$$

$$=$$

$$=$$

$$=$$

5. Find any errors and correct them.

a)
$$(3^2)^3 = 3^5$$

b)
$$(3+2)^2 = 3^2 + 2^2$$

c)
$$(5^3)^3 = 5^9$$

d)
$$\left(\frac{2}{3}\right)^8 = \frac{2^8}{3^8}$$

e)
$$(3 \times 2)^2 = 36$$

f)
$$\left(\frac{2}{3}\right)^2 = \frac{4}{6}$$

g)
$$[(-3)^3]^0 = (-3)^3$$

$$r^2 = (-3)^2$$

h)
$$[(-2) \times (-3)]^4 = -6^4$$