2.4 Skill Builder

Simplifying Fractions

To simplify a fraction, divide the numerator and denominator by their common factors.

To simplify $\frac{5 \times 5 \times 5 \times 5}{5 \times 5}$:

This fraction shows repeated multiplication.

Divide the numerator and denominator by their common factors: 5×5 .

$$\frac{\cancel{5}^{1} \times \cancel{5}^{1} \times 5 \times 5}{\cancel{5}^{1} \times \cancel{5}^{1}}$$

$$5 \times 5$$

$$=\frac{5\times 5}{1}$$

Check

1. Simplify each fraction.

a)
$$\frac{3\times3\times3}{3}$$

=

$$\mathbf{b)} \ \frac{8 \times 8 \times 8 \times 8 \times 8}{8 \times 8 \times 8 \times 8 \times 8}$$

=___

c)
$$\frac{5 \times 5 \times 5 \times 5 \times 5}{5 \times 5 \times 5}$$

d)
$$\frac{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2}{2 \times 2 \times 2 \times 2 \times 2}$$

= ____

What are the common factors?

2.4 Exponent Laws I

FOCUS Understand and apply the exponent laws for products and quotients of powers.

Multiply $3^2 \times 3^4$.

$$3^2 \times 3^4$$

Write as repeated multiplication.

$$= (3 \times 3) \times (3 \times 3 \times 3 \times 3)$$

$$=\underbrace{3\times3\times3\times3\times3\times3}$$

So,
$$3^2 \times 3^4 = 3^6$$

Look at the pattern in the exponents.

We write:
$$3^2 \times 3^4 = 3^{(2+4)}$$

This relationship is true when you multiply any 2 powers with the same base.

Exponent Law for a Product of Powers

 $= 5^7$

To multiply powers with the same base, add the exponents.

Simplifying Products with the Same Base Example 1

Write as a power.

a)
$$5^3 \times 5^4$$

a)
$$5^3 \times 5^4$$
 b) $(-6)^2 \times (-6)^3$ **c)** $(7^2)(7)$

c)
$$(7^2)(7)$$

Solution

a) The powers have the same base: 5 Use the exponent law for products: add the exponents. $5^3 \times 5^4 = 5^{(3+4)}$

To check your work, you can write the powers as repeated multiplication.

b) The powers have the same base:
$$-6$$

$$(-6)^2 \times (-6)^3 = (-6)^{(2+3)}$$
 Add the exponents.
$$= (-6)^5$$

c)
$$(7^2)(7) = 7^2 \times 7^1$$

= $7^{(2+1)}$
= 7^3

Use the exponent law for products. Add the exponents.

7 can be written as 7¹.

Check

1. Write as a power.

a)
$$2^5 \times 2^4 = 2^{(\underline{\hspace{1cm}} + \underline{\hspace{1cm}})}$$

= 2—

We can show division

in fraction form.

c)
$$(-3)^2 \times (-3)^3 =$$

d)
$$10^5 \times 10 =$$

Divide $3^4 \div 3^2$.

$$3^4 \div 3^2 = \frac{3^4}{3^2}.$$

$$= \frac{3 \times 3 \times 3 \times 3}{3 \times 3}$$
 Simplify.

$$=\frac{\cancel{3}^{1}\times\cancel{3}^{1}\times\cancel{3}\times\cancel{3}}{\cancel{3}^{1}\times\cancel{3}^{1}}$$

$$=\frac{3\times3}{1}$$

$$= 3 \times 3$$

$$= 3^2$$

So,
$$3^4 \div 3^2 = 3^2$$

Look at the pattern in the exponents.

We write:
$$3^4 \div 3^2 = 3^{(4-2)}$$

= 3^2

This relationship is true when you divide any 2 powers with the same base.

Exponent Law for a Quotient of Powers

To divide powers with the same base, subtract the exponents.

Example 2

Simplifying Quotients with the Same Base

Write as a power.

a)
$$4^5 \div 4^3$$

b)
$$(-2)^7 \div (-2)^2$$

Solution

Use the exponent law for quotients: subtract the exponents.

a)
$$4^5 \div 4^3 = 4^{(5-3)}$$

= 4^2

The powers have the same base: 4

b)
$$(-2)^7 \div (-2)^2 = (-2)^{(7-2)}$$

= $(-2)^5$

To check your work, you can write the powers as repeated multiplication.

The powers have the same base: -2

Check

1. Write as a power.

a)
$$(-5)^6 \div (-5)^3 = (-5)$$

=

b)
$$\frac{(-3)^9}{(-3)^5} = (-3)$$

$$\frac{(-3)^9}{(-3)^5} \text{ is the same as} \\ (-3)^9 \div (-3)^5$$

c)
$$8^4 \div 8^3 =$$

d)
$$9^8 \div 9^2 =$$

Example 3

Evaluating Expressions Using Exponent Laws

Evaluate.

a)
$$2^2 \times 2^3 \div 2^4$$

b)
$$(-2)^5 \div (-2)^3 \times (-2)$$

Solution

a)
$$2^2 \times 2^3 \div 2^4$$

= $2^{(2+3)} \div 2^4$
= $2^5 \div 2^4$
= $2^{(5-4)}$
= 2^1
= 2

Add the exponents of the 2 powers that are multiplied. Then, subtract the exponent of the power that is divided.

b)
$$(-2)^5 \div (-2)^3 \times (-2)$$

 $= (-2)^{(5-3)} \times (-2)$
 $= (-2)^2 \times (-2)$
 $= (-2)^{(2+1)}$
 $= (-2)^{(3)}$
 $= (-2)(-2)(-2)$
 $= -8$

Subtract the exponents of the 2 powers that are divided.

Multiply: add the exponents.

Check

1. Evaluate.

a)
$$4 \times 4^3 \div 4^2 = 4(\underline{\qquad} + \underline{\qquad}) \div 4^2$$

= $4\underline{\qquad} \div 4^2$
= $4(\underline{\qquad} - \underline{\qquad})$
= $4\underline{\qquad}$
= $\underline{\qquad}$

b)
$$(-3) \div (-3) \times (-3)$$

= (-3) $\times (-3)$
= (-3) $\times (-3)$
= (-3) $\times (-3)$
= (-3) $\times (-3)$
= (-3) $\times (-3)$

Practice

1. Write each product as a single power.

a)
$$7^6 \times 7^2 = 7(\underline{}^+ \underline{})$$

= 7...

c)
$$(-2) \times (-2)^3 =$$

e)
$$7^0 \times 7^1 =$$

b) $(-4)^5 \times (-4)^3 = (-4)$

d) $10^5 \times 10^5 =$

f) $(-3)^4 \times (-3)^5 =$

To multiply powers with the same base, add the exponents.

2. Write each quotient as a power.

c)
$$\frac{4^7}{4^4} = 4$$
 = 4...

b) $5^6 \div 5^4 = 5$

To divide powers with the same base, subtract the exponents.

$$6^4 = \underline{\qquad} \qquad \qquad \mathbf{f)} \quad \frac{(-6)^8}{(-6)^7} = \underline{\qquad} \qquad \qquad = \underline{\qquad} \qquad \qquad = \underline{\qquad} \qquad \qquad = \underline{\qquad} \qquad =$$

3. Write as a single power.

a)
$$2^3 \times 2^4 \times 2^5 = 2^{(\underline{} + \underline{})} \times 2^5$$

= $2^{\underline{}} \times 2^5$
= $2^{\underline{}}$
= $2^{\underline{}}$

c)
$$10^3 \times 10^5 \div 10^2 = \underline{\qquad} \div 10^2 = \underline{\qquad} \div 10^2 = \underline{\qquad} \div 10^2 = \underline{\qquad}$$

b)
$$\frac{3^2 \times 3^2}{3^2 \times 3^2} = \frac{3}{3}$$

$$= \frac{3}{3}$$

d)
$$(-1)^9 \div (-1)^5 \times (-1)^0$$

= _____ × $(-1)^0$
= ____ × $(-1)^0$
= ____ =

4. Simplify, then evaluate.

a)
$$(-3)^1 \times (-3)^2 \times 2$$

= ____ \times 2
= ___ \times 2
= ___ \times 2

b)
$$9^9 \div 9^7 \times 9^0 = \underline{\hspace{1cm}} \times 9^0$$

$$= \underline{\hspace{1cm}} \times 9^0$$

$$= \underline{\hspace{1cm}} \times 9^0$$

$$= \underline{\hspace{1cm}} \times 9^0$$
See if you can use the exponent laws to simplify.

d)
$$\frac{5^5}{5^4} \times 5 = 5 - - \times 5$$

= 5 - - \times 5
= 5 - - - = 5 - - =

5. Identify any errors and correct them.

a)
$$4^3 \times 4^5 = 4^8$$

b)
$$2^5 \times 2^5 = 2^{25}$$

c)
$$(-3)^6 \div (-3)^2 = (-3)^3$$

d)
$$7^{0} \times 7^{2} = 7^{0}$$

e)
$$6^2 + 6^2 = 6^4$$

f)
$$10^6 \div 10 = 10^6$$

g)
$$2^3 \times 5^2 = 10^5$$