2.3 Skill Builder

Adding Integers

To add a positive integer and a negative integer: 7 + (-4)

- Model each integer with tiles.
- Circle zero pairs.

There are 4 zero pairs.

There are 3
tiles left.

They model 3.

So, 7 + (-4) = 3

To add 2 negative integers: (-4) + (-2)

- Model each integer with tiles.
- Combine the tiles.

There are 6 **tiles**.

They model -6.

So,
$$(-4) + (-2) = -6$$

Each pair of 1 tile and 1 tile makes a zero pair.
The pair models 0.

Check

1. Add.

a)
$$(-3) + (-4) =$$

b)
$$6 + (-2) =$$

c)
$$(-5) + 2 =$$

d)
$$(-4) + (-4) =$$

2. a) Kerry borrows \$5. Then she borrows another \$5.

Add to show what Kerry owes.

$$(-5) + (-5) =$$

Kerry owes \$_____.

When an amount of money is negative, it is owed.

b) The temperature was 8°C. It fell 10°C. Add to show the new temperature.

The new temperature is _____°C.

Subtracting Integers

To subtract 2 integers: 3 - 6

- Model the first integer.
- Take away the number of tiles equal to the second integer.

Model 3.

There are not enough tiles to take away 6. To take away 6, we need 3 more
tiles. We add zero pairs. Add 3 🗎 tiles and 3 🔳 tiles. Adding zero pairs does not change the value. Zero pairs represent 0.

Now take away the 6 Tiles.

Since 3 \blacksquare tiles remain, we write: 3 - 6 = -3

When tiles are not available, think of subtraction as the opposite of addition. To subtract an integer, add its opposite integer.

For example,

$$(-3) - (+2) = -5$$

Subtract +2.

$$(-3) + (-2) = -5$$

Add -2.

Check

1. Subtract.

a)
$$(-6) - 2 =$$

b)
$$2 - (-6) =$$

d)
$$8 - (-9) =$$

Dividing Integers

When dividing 2 integers, look at the sign of each integer:

- When the integers have the same sign, their quotient is positive.
- When the integers have different signs, their quotient is negative.

The same rule applies to the multiplication of integers.

$$6 \div (-3)$$

These 2 integers have different signs, so their quotient is negative.

$$6 \div (-3) = -2$$

$$(-10) \div (-2)$$

These 2 integers have the same sign, so their quotient is positive.

$$(-10) \div (-2) = 5$$

Check

1. Calculate.

a)
$$(-4) \div 2$$

b)
$$(-6) \div (-3)$$

c)
$$15 \div (-3)$$

2.3 Order of Operations with Powers

FOCUS Explain and apply the order of operations with exponents.

We use this order of operations when evaluating an expression with powers:

- Do the operations in brackets first.
- Evaluate the powers.
- Multiply and divide, in order, from left to right.
- Add and subtract, in order, from left to right.

We can use the word BEDMAS to help us remember the order of operations:

- **B** Brackets
- **E** Exponents
- D Division
- M Multiplication
- A Addition
- **S** Subtraction

Example 1

Adding and Subtracting with Powers

Evaluate.

a)
$$2^3 + 1$$

b)
$$8 - 3^2$$

c)
$$(3-1)^3$$

Solution

a)
$$2^3 + 1$$

$$= (2)(2)(2) + 1$$

= 8 + 1

$$= 8 + 1$$

Then add:
$$8 + 1$$

b)
$$8 - 3^2$$

$$= 8 - (3)(3)$$

$$= 8 - 9$$

$$= -1$$

Then subtract:
$$8-9$$

c)
$$(3-1)^3$$

$$= 2^3$$

$$= (2)(2)(2)$$

Subtract inside the brackets first:
$$3-1$$

Check

1. Evaluate.

a)
$$4^2 + 3 = \underline{\hspace{1cm}} + 3$$

c)
$$(2 + 1)^2 =$$
_____2

b)
$$5^2 - 2^2 = \underline{\hspace{1cm}} - (2)(2)$$

d)
$$(5-6)^2 =$$

Example 2

Multiplying and Dividing with Powers

Evaluate.

a)
$$[2 \times (-2)^3]^2$$

Curved brackets Square brackets

b)
$$(7^2 + 5^0) \div (-5)^1$$

When we need curved brackets for integers, we use square brackets to show the order of operations.

Solution

a)
$$[2 \times (-2)^3]^2$$

$$= [2 \times (-8)]^2$$

$$=(-16)^2$$

$$= 256$$

b)
$$(7^2 + 5^0) \div (-5)^1$$

$$= (49 + 1) \div (-5)^{1}$$

$$= 50 \div (-5)^1$$

$$= 50 \div (-5)$$

$$= -10$$

- a bos sections

Evaluate what is inside the square brackets first: $2 \times (-2)^3$

Evaluate what is inside the brackets first: $7^2 + 5^0$ Add inside the brackets: 49 + 1

Evaluate the power: $(-5)^1$

Start with $(-2)^3 = -8$.

Check

1. Evaluate.

b)
$$8^2 \div 4 = \underline{} \div 4 =$$

c)
$$(3^2 + 6^0)^2 \div 2^1$$

= $(\underline{} + \underline{})^2 \div 2^1$
= $\underline{} \div 2^1$
= $\underline{} \div \underline{}$
= $\underline{} = \underline{}$

d)
$$10^2 + (2 \times 2^2)^2 = 10^2 + (2 \times ____)^2$$

= $10^2 + ____$
= ____ + ____

Example 3 Solving Problems Using Powers

Corin answered the following skill-testing question to win free movie tickets:

$$120 + 20^3 \div 10^3 + 12 \times 120$$

His answer was 1568.

Did Corin win the movie tickets? Show your work.

Solution

$$120 + 20^{3} \div 10^{3} + 12 \times 120$$

$$= 120 + 8000 \div 1000 + 12 \times 120$$

$$= 120 + 8 + 1440$$

$$= 1568$$

Corin won the movie tickets.

Evaluate the powers first: 20³ and 10³ Divide and multiply.

Add: 120 + 8 + 1440

Check

1. Answer the following skill-testing question to enter a draw for a Caribbean cruise.

$$(6 + 4) + 3^2 \times 10 - 10^2 \div 4$$

Practice

1. Evaluate.

a)
$$2^2 + 1 = \underline{\hspace{1cm}} + 1$$

c)
$$(2 + 1)^2 = \underline{}$$

2. Evaluate.

c)
$$(4 \times 2)^2 =$$
_______ = _____ = _____

3. Evaluate.

a)
$$2^3 + (-1)^3 = \underline{\qquad} + (-1)^3 = \underline{\qquad} + (-1)^3 = \underline{\qquad} + (-1)^3 = \underline{\qquad} + \underline{\qquad} = \underline{\qquad}$$

c)
$$2^3 - (-1)^3 = \underline{\qquad} - (-1)^3$$

= $\underline{\qquad} - (-1)^3$
= $\underline{\qquad} - \underline{\qquad}$
= $\underline{\qquad} - \underline{\qquad}$

4. Evaluate.

a)
$$3^2 \div (-1)^2 = \underline{\qquad} \div (-1)^2 = \underline{\qquad} \div (-1)^2 = \underline{\qquad} \div (-1)^2 = \underline{\qquad} \div \underline{\qquad} = \underline{\qquad} = \underline{\qquad} = \underline{\qquad} \div \underline{\qquad} = \underline{\qquad} = \underline{\qquad} = \underline{\qquad} \div \underline{\qquad} = \underline{\qquad} = \underline{\qquad} = \underline{\qquad} + \underline{\qquad} = \underline{\qquad}$$

c)
$$3^2 \times (-2)^2 = \underline{\qquad} \times (-2)^2 = \underline{\qquad} \times (-2)^2 = \underline{\qquad} \times (-2)^2 = \underline{\qquad} \times \underline{\qquad} = \underline{\qquad} = \underline{\qquad} = \underline{\qquad} \times \underline{\qquad} = \underline{\qquad} = \underline{\qquad} = \underline{\qquad} \times \underline{\qquad} = \underline{\qquad}$$

b)
$$2^2 - 1 = \underline{\hspace{1cm}} - 1$$

= $\underline{\hspace{1cm}} - 1$
= $\underline{\hspace{1cm}}$

d)
$$(2-1)^2 =$$
______ = ____ = ____

b)
$$4^2 \times 2 = \underline{\hspace{1cm}} \times 2$$

= $\underline{\hspace{1cm}} \times 2$
= $\underline{\hspace{1cm}} \times 2$

d)
$$(-4)^2 \div 2 = \underline{\qquad} \div 2$$

= $\underline{\qquad} \div 2$
= $\underline{\qquad}$

b)
$$(2-1)^3 =$$

$$=$$

$$=$$

$$=$$

d)
$$(2 + 1)^3 =$$

$$=$$

$$=$$

d)
$$5^2 \div (-5)^1 = \underline{\qquad} \div \underline{\qquad} \div \underline{\qquad} = \underline{\qquad} = \underline{\qquad}$$