2.2 Skill Builder

Patterns and Relationships in Tables

Look at the patterns in this table.

Input		Output		
1	*-×2	-	2	
2	×2	>	4	
3	×2		6	
4	×2		8	•
5	×2		10	

The input starts at 1 and increases by 1 each time.

The output starts at 2 and increases by 2 each time.

The input and output are also related. Double the input to get the output.

Check

- **1. a)** Describe the patterns in the table.
 - **b)** What is the input in the last row? What is the output in the last row?

	Input	Output		
	1	5]_	
1	2	10	1	
	3	15		
	4	20	<	

- a) The input starts at _____, and increases by _____ each time.

 The output starts at _____, and increases by _____ each time.

 You can also multiply the input by _____ to get the output.
- **b)** The input in the last row is 4 + ____ = ___.

 The output in the last row is 20 + ___ = ___.

- 2. a) Describe the patterns in the table.
 - **b)** Extend the table 3 more rows.

Input	Output		
10	100		
9	90		
8	80		
7	70		
6	60		

- a) The input starts at 10, and decreases by _____ each time.

 The output starts at 100, and decreases by _____ each time.

 You can also multiply the input by ____ to get the output.
- **b)** To extend the table 3 more rows, continue to decrease the input by _____ each time.

 Decrease the output by _____ each time.

Input	Output	
5		

Writing Numbers in Expanded Form

8000 is 8 thousands, or 8×1000 600 is 6 hundreds, or 6×100 50 is 5 tens, or 5×10

Read it aloud.

Check

- **1.** Write each number in expanded form.
 - **a)** 7000
 - **b)** 900
 - **c)** 400 _____
 - **d)** 30

2.2 Powers of Ten and the Zero Exponent

FOCUS Explore patterns and powers of 10 to develop a meaning for the exponent 0.

This table shows decreasing powers of 3.

Power	Repeated Multiplication	Standard Form
3 ⁵	3 × 3 × 3 × 3 × 3	243
3 ⁴	3 × 3 × 3 × 3	81
3 ³	3 × 3 × 3	27 OF X OF X OF 4 0001 4
3 ²	3 × 3	9
31	3	3

Look for patterns in the columns.

The exponent decreases by 1 each time.

Divide by 3 each time.

The patterns suggest $3^0 = 1$ because $3 \div 3 = 1$.

We can make a similar table for the powers of any integer base except 0.

The Zero Exponent

A power with exponent 0 is equal to 1.

The base of the power can be any integer except 0.

Example 1

Powers with Exponent Zero

Evaluate each expression.

a) 6°

b) (-5)⁰

Solution

A power with exponent 0 is equal to 1.

a) $6^0 = 1$

b) $(-5)^0 = 1$

The zero exponent applies to the number in the brackets.

Check

- 1. Evaluate each expression.
 - a) $8^0 =$ _____
 - **c)** $4^0 = 4^0$

d) $(-10)^0 =$

If there are no brackets, the zero exponent applies only to the base.

Write as a power of 10.

a) 10 000

b) 1000

c) 100

d) 10 **e)** 1

Solution

a)
$$10\ 000 = 10 \times 10 \times 10 \times 10$$

= 10^4

b)
$$1000 = 10 \times 10 \times 10$$

= 10^3

c)
$$100 = 10 \times 10$$

= 10^2

d) $10 = 10^1$

e) $1 = 10^{0}$

Notice that the exponent is equal to the number of zeros.

Check

1. a)
$$5^1 =$$

b)
$$(-7)^1 =$$

c)
$$10^1 =$$

d)
$$10^0 =$$

Practice

1. a) Complete the table below.

Power	Repeated Multiplication	Standard Form
5 ⁴	5 × 5 × 5 × 5	625
5 ³	5 × 5 × 5	
5 ²		
51		

b) What is the value of 5^{1} ?

c) Use the table. What is the value of 5° ?

7	Fva	luate	each	power.
~ :	Lva	luate	Cacii	povvei.

a)
$$2^0 =$$

b)
$$9^0 =$$

If there are no brackets, the exponent applies only to the base.

c)
$$(-2)^0 =$$

d)
$$-2^0 =$$

e)
$$10^1 =$$

f)
$$(-8)^1 =$$

3. Write each number as a power of 10.

4. Evaluate each power of 10.

a)
$$-10^6 =$$

b)
$$-10^0 =$$

c)
$$-10^8 =$$

d)
$$-10^1 =$$

5. One trillion is written as 1 000 000 000 000. Write each number as a power of 10.

6. Write each number in standard form.

a)
$$5 \times 10^4 = 5 \times 10000$$

c)
$$(2 \times 10^3) + (6 \times 10^2) + (4 \times 10^1) + (9 \times 10^0)$$

=

d)
$$(7 \times 10^3) + (8 \times 10^0) =$$
=
=
=