Unit 1 Study Guide

Skill	Description	Example
Identify fractions that are perfect squares and find their square roots.	A fraction is a perfect square if it can be written as the product of 2 equal fractions. The square root is one of the 2 equal fractions.	$\frac{16}{25} = \frac{4}{5} \times \frac{4}{5}$ $\sqrt{\frac{16}{25}} = \frac{4}{5}$
Identify decimals that are perfect squares.	Use a calculator. The square root is a repeating or terminating decimal.	$\sqrt{1.69} = 1.3$
Estimate square roots of numbers that are not perfect	Find perfect squares close to the number.	$\sqrt{\frac{3}{10}} \doteq \sqrt{\frac{4}{9}} \doteq \frac{2}{3}$ 3 is close to 4; 10 is close to 9.
squares.	Use the squares and square roots number lines.	4 7.5 9
		$ \begin{array}{c cccc} & & & & & \\ \hline 2 & & & & \\ \hline & & & \\$
Calculate the surface area of a composite object.	Add the areas of each of the 6 views.	Front
		The surface Left side Right side area is 14 Bottom Square units.
E 16-155	Or Add surface areas of the parts, then subtract for the overlap.	$SA = 125.66 \text{ cm}^2$ $Area = 12.57 \text{ cm}^2$ $SA = 216 \text{ cm}^2$ $SA = 216 + 125.66 - 2(12.57)$ $= 316.52$ The surface area is about 317 cm ² .

Unit 1 Review

1.1 1. Calculate the number whose square root is:

a) $\frac{3}{7}$

b) 9.9

 $9.9 \times 9.9 =$

9.9 is a square root of _____

2. Complete the table.

	Fraction	is numerator a perfect square?	Is denominator a perfect square?	Is fraction a perfect square?
	<u>25</u> 81		asdrine sát	_ 2350/14/11 to 2004 to
1	<u>7</u>	em Heiner C.		29161.02
)	<u>49</u> 65		29/11/9/2/10/2-23001	

3. Complete the table.

	Decimal	Value of Square Root	Type of Decimal .	Is decimal a perfect square?
	5.29			logica sterograco s
)	156.25	1274 3 12 34 FT		
)	6.4			

4. Find the square root of each number.

a) $\sqrt{\frac{25}{81}} =$

b) $\sqrt{59.29} =$

1.2 5. Estimate $\sqrt{14.5}$. Explain your estimate.

14.5 is between ____ and ___.

So, $\sqrt{14.5}$ is between $\sqrt{}$ and $\sqrt{}$. That is, $\sqrt{14.5}$ is between $\sqrt{}$ and $\sqrt{}$.

Since 14.5 is closer to ____ than ____, $\sqrt{14.5}$ is closer to ____ than ____. So, $\sqrt{14.5}$ is between ____ and ____, and closer to ____.

a)
$$\sqrt{\frac{2}{13}}$$

So,
$$\sqrt{\frac{2}{13}} \doteq \sqrt{\frac{}{}}$$

b)
$$\sqrt{\frac{11}{70}}$$

2 is close to _____; 13 is close to _____. 11 is close to _____; 70 is close to _____.

So,
$$\sqrt{\frac{11}{70}} \doteq \sqrt{\frac{}{}}$$
 $\doteq \frac{}{}$

- 7. Identify a decimal that has a square root between the two given numbers. Check the answer.
 - a) 2 and 3

 $2^2 =$ and $3^2 =$

So, any number between ____ and ____ has a square root between 2 and 3.

Choose

Check: √___ =

The decimal ____ is one possible answer.

b) 6.5 and 7.5

____ = ___ and ___ = ___

So, any number between and has a square root between 6.5 and 7.5.

Choose

Check: √___ =

The decimal _____ is one possible answer.

8. Find the length of the hypotenuse of each right triangle.

a)

b)

$$h^2 =$$
____ + ____

$$h^2 = +$$

$$h^2 = \underline{\hspace{1cm}}$$

$$h = \sqrt{\underline{\hspace{1cm}}}$$

$$h = \sqrt{\underline{}}$$

The length of the hypotenuse is about ____ cm.

h^2					
11-	-	 . +	_	 _	

$$h^2 =$$
_____ + ____

$$h^2 = \underline{\qquad \qquad}$$

$$h = \sqrt{\underline{\qquad \qquad}}$$

$$h \doteq$$

Matching Views	Diagram	Corresponding Area (cm²)
Lot sado si eti		01 92010 % 5
<u>wis aut so</u> t ces	wied four maugers ead is	7. identify a decimal 31
		Check line answer
Total		£508 £ (8

The surface area is $___ cm^2$.

10. Calculate the surface area of this composite object.

Surface area of cube

Matching Faces	Corresponding Area (cm ²)	
/		6(×) =
Total		

The surface area is _____cm².

Surface area of rectangular prism

Matching Faces	Diagram	Corresponding Area (cm ²)
/		
/		
/		3 5avr
And the second of the second o		
Total		

The surface area is ____ cm².

Area	of	over	lan

Diagram	Corresponding Area (cm ²)		
	×=		

The area of overlap is ____ cm².

SA composite object = _____ + _____ - ____

The surface area of the composite object is _____ cm².

1.4 11. Find the surface area of this composite object.

Surface area of rectangular pr Diagram

Matching

Faces

rism	Surface area of	triangular prism	
Corresponding Area (cm²)	Matching Faces	Diagram	Corresponding Area (cm ²)
	Triangular	e surface area is	
		i cessă padolei	
		and the	
	Rectangular		
		aneth surface	
		ferr	
n ² .	Total	a surface area is at	

The surface area is ____ cm

Area of overlap

Total

Diagram	Corresponding Area (cm ²)		

The surface area is ____ cm².

The area of overlap is $__ cm^2$.

The surface area of the composite object is ____ cm².

12. Find the surface area of this composite object.

1/		12	2 cm	
16 cm)‡4 cm
1/	12 om			

The larger cylinder has diameter ___ cm, so its radius is __ cm. The smaller cylinder has diameter __ cm, so its radius is __ cm.

Surface area of smaller cylinder

Matching Faces Diagram		Corresponding Area (cm ²)	
Top Bottom		_×_×_==	
Curved surface	er to care social	××=	
Total		The first second	

The surface area is about ____ cm².

Surface area of larger cylinder

Matching Faces	Diagram	Corresponding Area (cm ²)
Top Bottom		×==
Curved surface		××=
Total		isroi

The surface area is about ____ cm².

Area of overlap

Diagram	Corresponding Area (cm ²)			
	× =			

The area of overlap is about _____ cm².

Surface area of the composite object = _____ + ____ _ _ _ ___

The surface area is about _____ cm².