

Square Roots and Surface Area

What You'll Learn

- Find square roots of fractions and decimals that are perfect squares.
- Approximate the square roots of fractions and decimals that are not perfect squares.
- Find the surface areas of composite objects.

Why It's Important

Square roots are used by

- police officers, to estimate the speed of a vehicle when it crashed
- vets, to calculate drug dosages

Surface area is used by

- painters, to find the number of cans of paint needed to paint a room
- farmers, to find the amount of fertilizer needed for a field

Key Words

square square root perfect square non-perfect square terminating decimal repeating decimal non-terminating, non-repeating decimal surface area composite object

1.1 Skill Builder

The side length and area of a square are related.

• The area is the **square** of the side length.

5 units Area =
$$(\text{Length})^2$$

= 5^2
= 5×5
= 25

The area is 25 square units.

• The side length is the **square root** of the area.

Area = 25 square units Length = $\sqrt{\text{Area}}$ = $\sqrt{25}$ = $\sqrt{5 \times 5}$ = 5

The side length is 5 units.

Check

1. Which square and square root are modelled by each diagram?

Diagram	Square Modelled	Square Root Modelled
Area = 49 square units	$(\text{Length})^2 = \text{Area}$ $7^2 = \underline{\qquad}$	$\sqrt{\text{Area}} = \text{Length}$ $\sqrt{49} = \underline{\hspace{1cm}}$
7 units	The area is 49 square units.	The side length is 7 units.
b)	=	√ <u> </u>
4 units	The area is square units.	The side length is units.
c)	=	√ =
8 units	The area is square units.	The side length is units.
d)	<u> =</u>	
11 units	The area is square units.	The side length is units.

Whole Number Squares and Square Roots

- The square of a number is the number multiplied by itself.
- A square root of a number is one of 2 equal factors of the number.
- Squaring and taking a square root are inverse operations.

$$5^{2} = 5 \times 5$$

$$= 25$$

$$\sqrt{25} = \sqrt{5 \times 5}$$

$$= 5$$

$$5^{2} = 25 \text{ and } \sqrt{25} = 5$$

Check

1. Complete each sentence.

a)
$$4^2 = 16$$
, so $\sqrt{16} =$

a)
$$4^2 = 16$$
, so $\sqrt{16} =$ _____, so $\sqrt{_{---}} =$ _____

c)
$$\sqrt{25} =$$
____, since ____ = 25

c)
$$\sqrt{25} =$$
____, since ___ = 25 **d)** $\sqrt{100} =$ ___, since ___ = ___

Perfect Squares

A number is a **perfect square** if it is the product of

2 equal factors.

25 is a perfect square because $25 = 5 \times 5$.

24 is a **non-perfect square.** It is not the product of

2 equal factors.

Check

1. Complete each sentence.

First 12 Whole-Number Perfect Squares						
Perfect Square	Square Root	Perfect Square	Square Root			
$1^2 = 1 \times 1 = 1$	$\sqrt{1} = 1$	7 ² = × =	√ =			
$2^2 = 2 \times 2 = 4$	$\sqrt{4} = 2$	8 ² = × =	√ <u> </u>			
3 ² = × =	√ <u> </u>	9 ² = × =	√ <u></u> =			
4 ² = × =	√ =	10 ² = × =				
5 ² = × =	\ =	11 ² = × =	\[\sqrt{\} =			
6 ² = × =	\ =	12 ² = × =	\ =			

1.1 Square Roots of Perfect Squares

FOCUS Find the square roots of decimals and fractions that are perfect squares.

The square of a fraction or decimal is the number multiplied by itself.

$$\left(\frac{2}{3}\right)^2 = \frac{2}{3} \times \frac{2}{3}$$
$$= \frac{2 \times 2}{3 \times 3}$$
$$= \frac{4}{3}$$

$$(1.5)^2 = 1.5 \times 1.5$$

= 2.25

 $\frac{4}{9}$ and 2.25 are perfect squares because they are the product of 2 equal factors.

$$\frac{2}{3} \times \frac{2}{3} = \frac{4}{9}$$
, so

 $\frac{2}{3}$ is a square root of $\frac{4}{9}$.

$$2.25 = 1.5 \times 1.5$$
, so

1.5 is a square root of 2.25.

We write: $\sqrt{2.25} = 1.5$

Each equal factor is a square root of the perfect square.

We write: $\sqrt{\frac{4}{9}} = \frac{2}{3}$

Example 1

Finding a Perfect Square Given Its Square Root

Calculate the number whose square root is:

a)
$$\frac{5}{8}$$

Solution

A square root of a number is one of two equal factors of the number.

a)
$$\frac{5}{8}$$

 $\frac{5}{8} \times \frac{5}{8} = \frac{5 \times 5}{8 \times 8}$
 $= \frac{25}{64}$

So, $\frac{5}{8}$ is a square root of $\frac{25}{64}$.

Check

1. Calculate the perfect square with the given square root.

a)	3			
	<u>3</u>	× <u>3</u>	=	×
	8	8		×
			_	

 $\frac{3}{8}$ is a square root of _____.

×	=	
 		94

 $\frac{3}{2}$ is a square root of ____

d) 2.5
$$2.5 \times 2.5 =$$
_____ 2.5 is a square root of _____.

Identifying Fractions that Are Perfect Squares Example 2

Is each fraction a perfect square? If so, find its square root.

a)
$$\frac{16}{25}$$

b)
$$\frac{9}{20}$$

Solution

Check if the numerator and denominator are perfect squares.

a)
$$\frac{16}{25}$$

 $16 = 4 \times 4$, so 16 is a perfect square. $9 = 3 \times 3$, so 9 is a perfect square.

 $25 = 5 \times 5$, so 25 is a perfect square.

So, $\frac{16}{25}$ is a perfect square.

b)
$$\frac{9}{20}$$

20 is not a perfect square.

So, $\frac{9}{20}$ is not a perfect square.

Check

1. Determine whether the fraction is or is not a perfect square. How do you know?

- a) $\frac{9}{49}$
- 9 _____ a perfect square because _____
- 49 _____ a perfect square because _
- So, $\frac{9}{49}$ _____ a perfect square.
- b) 25 _____ a perfect square because ____
 - 13 _____ a perfect square because ____
 - So, $\frac{25}{12}$ _____ a perfect square.

- **c)** 64 _____ a perfect square because _____ 81 _____ a perfect square because _____ So, $\frac{64}{81}$ _____ a perfect square.
- 2. Find the value of each square root.

a)
$$\sqrt{\frac{9}{4}} = \sqrt{\frac{\times}{\times}} = \frac{\times}{\times}$$

a)
$$\sqrt{\frac{9}{4}} = \sqrt{\frac{\times}{\times}} = \frac{\times}{\times} = \frac{\times$$

A terminating decimal ends after a certain number of decimal places.

A repeating decimal has a repeating pattern of digits in the decimal expansion.

The bar shows the digits that repeat.

Terminating	Repeating	Non-terminating and non-repeating	
0.5 0.28	0.333 333 = 0.3	1.414 213 56 7.071 067 812	
	0.191 919 = 0.19	d e seupenstea s razed des a	

You can use a calculator to find out if a decimal is a perfect square. The square root of a perfect square decimal is either a terminating decimal or a répeating decimal.

Example 3

Identifying Decimals that Are Perfect Squares

Is each decimal a perfect square? How do you know?

a) 1.69

b) 3.5

Solution

Use a calculator to find the square root of each number.

a) $\sqrt{1.69} = 1.3$

The square root is the terminating decimal 1.3. So, 1.69 is a perfect square.

b) $\sqrt{3.5} \doteq 1.870 828 693$

The square root appears to be a decimal that neither repeats nor terminates. So, 3.5 is not a perfect square.

The symbol = means "approximately equal to".

Check

1. Complete the table to find whether each decimal is a perfect square. The first one is done for you.

	Decimal	Value of square root	Type of decimal	Is decimal a perfect square?
a)	70.5	8.396 427 811	Non-repeating Non-terminating	No
b)	5.76			
c)	0.25			4. Osq a cylchiacac Habita
d)	2.5			1 1 1 2 3 3 4 2

Practice

1. Calculate the number whose square root is:

a)	4			
	1 >	$\langle \frac{1}{2} = -$	×	_
	4	4	×	-

b)
$$\frac{2}{7}$$
 $\times = \frac{\times}{--\times}$ $= \frac{--\times}{---\times}$

 $\frac{1}{4}$ is a square root of _____.

 $\frac{2}{7}$ is a square root of _____.

c) 0.6

× ___ = ___

0.6 is a square root of ____.

d) 1.1
____ × ___ = ___
1.1 is a square root of _____.

2. Identify the fractions that are perfect squares. The first one has been done for you.

	Fraction	Is numerator a perfect square?	Is denominator a perfect square?	Is fraction a perfect square?
a)	<u>81</u> 125	Yes; $9 \times 9 = 81$	No	No
o)	<u>25</u> 49			
c)	36 121			
d)	<u>17</u> 25			
e)	<u>9</u> 100			

3. Find each square root.

a)
$$\sqrt{\frac{49}{100}} = \sqrt{\frac{\times}{\times}}$$

b)
$$\sqrt{\frac{25}{144}} = \sqrt{\frac{\times}{---\times}}$$

$$\sqrt{\frac{1}{16}} = \sqrt{\frac{\times}{\times}}$$

d)
$$\sqrt{\frac{9}{400}} = \sqrt{\frac{\times}{\times}}$$

4. Use a calculator. Find each square root.

a)
$$\sqrt{8.41} =$$

b)
$$\sqrt{0.0676} =$$

a)
$$\sqrt{8.41} =$$
 ____ b) $\sqrt{0.0676} =$ ___ c) $\sqrt{51.125} =$ ___ d) $\sqrt{6.25} =$ ____

d)
$$\sqrt{6.25} =$$

5. Which decimals are perfect squares?

$$\sqrt{1.44} =$$

The square root is a decimal that

So, 1.44 _____ a perfect square.

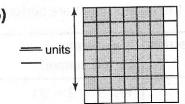
$$\sqrt{30.25} =$$

The square root is a decimal that ____

So, 30.25 _____ a perfect square.

c) 8.5

The square root is a decimal that _____


So, 8.5 _____ a perfect square.

$$\sqrt{0.0256} =$$

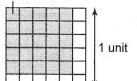
The square root is a decimal that

So, 0.0256—— a perfect square.

6. Find the area of each square.

Area =
$$(Length)^2$$

The area is _____


7. Find the side length of each square.

a) Area =
$$\frac{9}{100}$$
 square units

$$Length = \sqrt{Area}$$

The side length is ___ units.

b) Area =
$$\frac{25}{36}$$
 square units

Length =
$$\sqrt{}$$

c)	Area = 0.01 square units	Length = $\sqrt{}$	- 10 A 10

Р	-	
1		
-		

Length =
$$\sqrt{}$$