

The scale factor is _____.

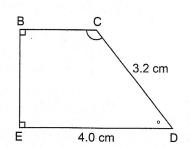
Can you ...

- Find the scale factor for a scale diagram?
- Use a scale factor to determine a length?
- Identify similar polygons and triangles?
- Use similar polygons and triangles to determine a length?

7.1	1. Find the scale factor for this scale diagram.	
	The actual diameter of the head of the pushpin is 6 n	nm.
	Measure the diameter of the pushpin in the diagram.	diamete
	Length = cm, or mm	
	Scale factor = $\frac{\text{length on scale diagram}}{\text{length of pushpin}}$	
	whose endings are to the comment as only	
	The scale factor is	
	2. A baby picture is to be enlarged.	
	The dimensions of the photo are 5 cm by 7 cm.	
		factor of 2.2
	Find the dimensions of the enlargement with a scale	
	J 1	
	Length of enlargement: $3.2 \times \underline{} = \underline{}$	
	Width of original photo:	
	Width of enlargement: × =	
	The enlargement has dimensions	
72	3. Find the scale factor for this reduction.	
7.12	Length of original line segment: cm	
	Length of reduction: cm	Original
		Scale diagram
	Scale factor = $\frac{\text{length on reduction}}{\text{length on original diagram}}$	Scale diagram
	ag 7,000 <u>≥ 2000 0</u> 700 080 000 140 000	
	440.04.0 <u>40.000</u> (440.000)	
	성명하다 하다 그는 어떻게 하는데 되었다면 하는 하는데 하는데 되었다.	

4. A reduction of a lacrosse stick is to be drawn with a scale factor of $\frac{7}{50}$. The lacrosse stick has length 100 cm. Find the length of the reduction.

Write the scale factor as a decimal.


$$\frac{7}{50} =$$

Length of lacrosse stick:

Length of reduction: ×

The reduction has length .

5. These two quadrilaterals are similar. Find the length of GH.

Quadrilateral FGHJ is a ______ of quadrilateral BCDE.

To find the scale factor, choose a pair of matching sides whose lengths are both known:

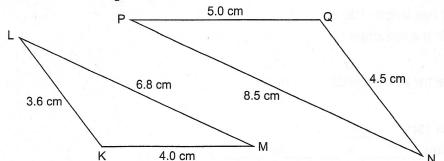
Scale factor =
$$\frac{\text{length on}}{\text{length on original}}$$

_

The scale factor is _____.

Use the scale factor to find the length of GH.

GH and _____ are matching sides.


Length of ____: ___

Scale factor: _____

Length of GH: _____

So, GH has length _____.

7.4 6. Are these 2 triangles similar?

Find out if matching sides are proportional.

In \triangle KLM, order the sides from shortest to longest: _____

In \triangle NPQ, order the sides from shortest to longest: _____

Find the scale factors of matching sides.

All scale factors are ______. So, the triangles ______

The two shorter sides meet at vertices: ____ and ____

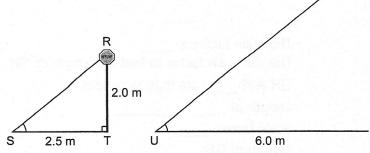
The longest and shortest sides meet at vertices: ____ and ___

The two longer sides meet at vertices: ____ and ___ So, \triangle KLM ~ \triangle

7. At a certain time of day, a street light and

a stop sign cast shadows. Find the height of the street light.

Matching angles are _____.


So, $\triangle RST \sim \triangle$

 \triangle _____ is an enlargement of

Δ_____.

Use sides _____ and to find the scale factor.

length on enlargement | = | | |

The scale factor is

Use the scale factor to find the height of the street light, VW.

VW and ____ are matching sides.

Length of ____ : ____ Scale factor: ____

Length of VW:

So, the height of the street light is _____.