NAME:		

Math P.A.T. Prep

Order of Operations / Ordering and Comparing in Number Lines / Finding the fraction of a Number SOLUTIONS

St. Brendan School Mr. Martinez

ational Numbers UDERATION

The simplifications of two different expressions are shown below.

Thursday V Care can't	E
Expression X CORRECT	Expression Y
$(3^2)^3 - 4^4 + 4^2 \times (-5)^2$	$(2^6 \div 2^2) + (-5^2) \times 3$
$= 3^6 - 4^4 + 4^2 \times (-5)^2$	$= 2^3 + (-5^2) \times 3$
$= 729 - 256 + 16 \times 25$	$= 8 + (-25) \times 3$
= 729 - 256 + 400	= 8 + (-75)
= 873	= -67

- Which of the following statements about the simplifications above is true?
 - The simplifications of both expressions are correct. Not True A.
 - The simplifications of both expressions are incorrect. Not There B.
 - C. The simplification of Expression X is correct and the simplification of Expression Y is incorrect.
 - D. The simplification of Expression Y is correct and the simplification of Expression X is incorrect.

Each of the four students shown below simplifies the following expression.

 $(4+2)^3 = 6^3$ 64-63-6 4 + 15 - 12 19-12 = 7

 $4+3\times5-6^4\div(4+2)^3\times2$

Student 1

Student 2

Student 3

Student 4

- Which student correctly simplified the expression?
 - A. Student 1
 - Student 2
 - C. Student 3
 - D. Student 4
- Which of the following expressions is equivalent to $\frac{40 + 10}{5 \times (6 4)}$
 - $40 + 10 \div 5 \times 6 4$ A.
 - $(40 + 10) \div 5 \times (6 4)$ В.

 $40 + 10 \div (5 \times (6 - 4))$ 40 + 101 - 15 × (6 -4)

DERING IN NUMBER LINES G COMPARING

The eight labelle points on the number line shown below represent rational numbers.

Numerical Response

Match each of the following rational numbers to its corresponding point on the number line shown above.

 $\frac{13}{8}$ is located at Point (Record in the second column) $\frac{13}{8} = 15$

 $-1\frac{3}{4}$ is located at Point ________. (Record in the first column) $-1\frac{3}{4} = -1.75$

1.125 is located at Point ____

6 . (Record in the third column)

1.125

-0.875 is located at Point ______. (Record in the fourth column) _____. 2.875

(Record your answer in the numerical-response section on the area or sheet.

The letters on the number line below represent rational numbers.

The approximate value of $\sqrt{15}$ is represented by the letter

A.

Which of the following rows has the rational numbers ordered from least to greatest?

Row	Least 0	4		Greatest	
A	$-\frac{5}{7}$	-0.6	$\frac{2}{5}$	0.5	
В.	-0.6 X	$-\frac{5}{7}$ \times	$\frac{2}{5}$	0.5	
%	<u>-5</u>	-0.6	0.5	$\frac{2}{5}$ 0.	
X	-0.6	$-\frac{5}{7}$	0.5	$\frac{2}{5}$ \circ	

- smaller numbers on the negative side over further away prom zero.

Sam plans to graph the following rational numbers on the number line shown below. Rational Numbers: $-2\frac{1}{4}$ -1.75 $\frac{-3}{2}$ $-2.\overline{8}$ $-1\frac{3}{5}$ $-(1.4)^2$ -2.25 -1.5

Numerical Response

How many of the rational numbers shown above should be graphed between Point M and Point N on the number line?

	7
Answer:	

(Record your answer in the numerical-response section on the answer sheet.)

The letters P and Q each represent an integer in the expression below.

$$2 \times P^3 - 6 \div Q$$

Which of the following values for P and Q would result in the lowest value for the 17. expression shown above?

Row	P	Q
Α.	-2	-2
В.	2	-2
C.	-2	2
D.	2 6.	2

$$2 \times (-2)^{3} - 6 \div (-2) = 2 \times (-8) - 6 \div (-2)$$

$$2 \times (2)^{3} - 6 \div (-2) = -10 - 3 = -19$$

$$2 \times (-8) - 6 \div 2 \longrightarrow -16 - 3 = -19$$

$$2 \times 8 - 6 \div 2 \longrightarrow 10 - 3 = 13$$

A FRACTION -> Multiply!

A scientific calculator has 40 buttons, of which $\frac{1}{4}$ are white, $\frac{1}{5}$ are grey, and 4 are orange. The rest of the buttons are black.

umerical Response

How many black buttons does the calculator have? 40 - (10 + 8 + 4) = 40 - 22

Answer:

(Record your answer in the numerical-response section on the answer sheet.)

35. What is the value of the expression $6 - \frac{1}{4} \div \frac{1}{2} - 2^3 \times 0.75$?

$$\begin{array}{|c|c|}\hline A. & -\frac{1}{2} \\ \hline \end{array}$$

B.
$$-\frac{1}{8}$$

c.
$$\frac{1}{8}$$

D.
$$\frac{1}{2}$$

39. Monica multiplies $-\frac{2}{3}$ by a number. If her answer is $-\frac{3}{2}$, then Monica multiplied $-\frac{2}{3}$ by $\sqrt{5}$

A.
$$-\left(\frac{3}{2}\right)^0$$

$$\mathbf{B.} \quad \left(\frac{3}{2}\right)^0$$

C.
$$-\left(\frac{3}{2}\right)^2$$

$$\mathbf{D.} \quad \left(\frac{3}{2}\right)^2$$

$$-\frac{2}{3} \times n = -\frac{3}{2} \div -\frac{2}{3}$$

$$= -\frac{2}{3} \times n = \frac{3 \times 3}{2 \times 2} = (\frac{3}{2})^{2}$$

A.
$$Y < Z < X$$

$$B. \quad Y < X < Z$$

$$\mathbf{D}. \quad \mathbf{Z} < \mathbf{Y} < \mathbf{X}$$

Variables q, r, and s represent rational numbers.

$$q > r$$
$$s = q + 1$$

22. Which of the following number lines represents the order of the three rational numbers?

ove any 3 numbers
$$4 = 3$$

$$5 = 9 + 1 = 4$$

$$7 = 2$$
then $5 > 9 > 7$
then $5 > 9 > 7$

$$605er$$
to
$$10$$