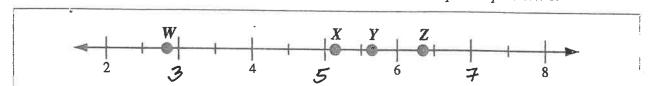

NAME:


Math P.A.T. Prep

Perfect and Non-Perfect Squares

Square Roots - Approx. Square Roots - SOLUTIONS

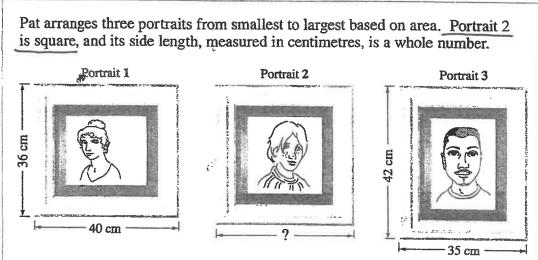
St. Brendan School Mr. Martínez

Numerical Response

Match each point on the number line above to the corresponding number in the table below.

		Code	Number	
		1	√37	a little above 6
	$\omega \leftarrow$	2	√8	a little below 9
	_	3	$\sqrt{22}$	a but below 5 (4.7)
	7 -	4	$\sqrt{41}$	closer to 6 than 7 - by
		5	√6	2. something
		6	√50	very close to 7
	X	7	$\sqrt{27}$	vory close to 5 but a distor.
	y <	8	$\sqrt{32}$	less than 6
Code: _Point:	$\frac{2}{w}$	7	8 	$\frac{4}{z}$

(Record all four digits of your answer in the numerical-response section on the answer sheet.)


· On the number line, as you can see, are "Square Roots!

· Recognize that:

$$2 = \sqrt{4}$$
 $5 = \sqrt{25}$

$$5 = \sqrt{25}$$

has to be point V37 -> between 6 and 7 -> V8 -> between 2 and 3, very close to 3 - W closer to Z V22 > between 4 and 5, closer to 5 V41 -> between 6 and 7, almost in the middle, closer to 6 V6 -> between 2 and 3, almost in the middle, closer to 2 √50 → between 7 and 8, very close TO 7 has to be × has to be × 127 > between 5 and 6, very close TO 5) √32 → between 5 and 6,

Numerical Response

The side length of portrait 2 is _____ cm.

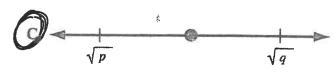
(Record your answer in the numerical-response section on the answer sheet.)

- JAPORTANT information -> PORTRAIT 2 is a square
 To write down / note -> Portrait 2 is a square

 This means a Perfect Square
- . thus, the area of Portrait is a square number between the AREA of P. 1 and the AREA of P.3
- · AROA OF _ bxh = (36 x 40) cm2 = 1940 cm2

 Portrait 1
- · ARea of = bxh=(35 × 42) cm² = 1470 cm² Portrait 3 = bxh=(35 × 42) cm² = 1470 cm²
- · Notice: The only number that's a perject square between 35 and 40 is 36.

thus -> the side length of Portrait 2 is



The letters p and q in the expression $\sqrt{\frac{p+q}{2}}$ represent consecutive perfect square numbers.

3. Which of the following number lines **best** represents the value of $\sqrt{\frac{p+q}{2}}$?

$$\mathbf{D.} \stackrel{+}{\sqrt{p}} \stackrel{-}{\sqrt{q}}$$

- · Key word -> Consecutive ; "following each other"
- "Consecutive Perfect squares" means Any Perfect squares that follow each other:
- · Remember: Perfect squales
- · Use any 2 consecutive perfect squares

$$\sqrt{\frac{P+9}{2}} = \sqrt{\frac{1+9}{2}} = \sqrt{\frac{5}{2}} = \sqrt{2.5}$$

So it is exactly in the middle

$$\sqrt{\frac{4+9}{2}} = \sqrt{\frac{13}{2}} = \sqrt{6.5}$$

1	Use the following information to answer question 1.
4/	

√51 √55 √61 √66 √71 √77

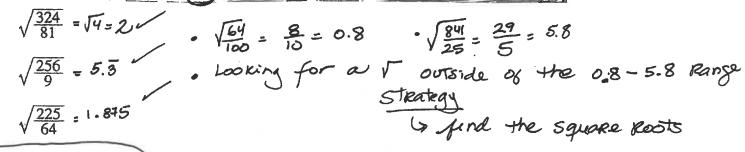
How many of the square roots shown above have a value that is between 7.8 and 8.8?

The square roots of two rational numbers are represented on the number line shown below.

$$\sqrt{\frac{64}{100}} = \frac{8}{10}$$

$$\sqrt{\frac{841}{25}} : \frac{29}{5}$$

If Q is located between points P and R on the number line above, then which of the following square roots could not epresent Q?


A.
$$\sqrt{\frac{324}{81}} = \sqrt{4} = 2$$

$$\sqrt{64} = \frac{8}{10} = 0.8$$

$$\sqrt{\frac{841}{25}} = \frac{29}{5} = 5.8$$

B.
$$\sqrt{\frac{256}{9}} = 5.\overline{3}$$

D.
$$\sqrt{\frac{169}{4}} = 6.5$$

Numerical Response

The number of perfect squares that are whole numbers between 2 and 20

(Record your answer in the numerical-response section on the answer sheet.)

- . Be careful: "number of PERRECT SQUARES", NOT which ones.
- List them: 1 9 9 1 25

In estimating $\sqrt{70}$, which two perfect square numbers provide the **best** two benchmarks to estimate your answer? 49 and 64 700 ngh $7\sqrt{70}$ V and $\sqrt{81}$

Benchmarks -> Known
perfect squares

(5 before 40

and

area 40

B. C. 49 and 81

64 and 81

Use the following information to answer numerical-response question 10.

6 2/2	5 21	= 4	. 16 -	
30			Square 3	*
Square 1	Squar	e 2	****	
		:	er er je ve	
7 : 49	8	: 64		**
Square	kana e (mara) 😸 ji iyana danasa	Square	5	with an

Numerical Response

Which two squares shown above represent the best benchmarks for estimating the value of $\sqrt{43}$?

Answer: Square and Square

(Record both digits of your answer in any order in the numerical-response section on the answer sheet.)

49

. Since 43 is between 36.

then - 7 143 6