| <b>NOMBRE:</b> |  |
|----------------|--|
| 1101-1         |  |

# P.A.T Prep

Released Non-Calculator Questions
2017-2018

Questions From
the 2018 Exam



St. Brendan School Mr. Martinez

## General Description of the Mathematics 2019 P.A.T

#### General Description

The Grade 9 Mathematics Provincial Achievement Test consists of two parts:

- Part A contains 20 numerical-response questions and assesses students' foundational skills and fluency in mental math, estimation, algebra, square roots, exponent laws, and arithmetic operations on rational numbers without the use of calculators.
- Part B contains 32 multiple-choice questions and 8 numericalresponse questions and assesses students' ability to recall concepts and principles and to apply reasoning skills to solve problems.

Questions are categorized according to three levels of complexity: low, moderate, and high. (See Appendix I for a more detailed explanation of each complexity level.)

#### Question Format

The following bullets briefly describe the two question formats:

- Multiple-choice questions provide students with four response options, of which only one is correct.
- Numerical-response questions require students to generate a response (in symbolic form) to a particular problem, rather than selecting a response from a list of four options.

## General Strategies Non-calculator Question

#### FRACTIONS and DECIMALS

- Because it makes it easier, I suggest that when dealing with fractions you
  convert them all to fractions of equal denominators.
- It is helpful to have a denominator of 100 whenever possible. That is, if you can, multiply the fraction by a number to get a denominator of 100 (do not forget that you MUST multiply both numerator and denominator).
- When dealing with decimals:
  - Try using a benchmark. For example, 0.80 is 0.20 away from 1.
  - I find it truly helpful to convert decimals into fractions:
- WORK OUT THE SIGNS FIRST!
- When adding and subtracting decimals, make sure you lineup the decimal point.
- To add decimals, break it up so you add in pieces of a more manageable unit. This means adding or subtracting to get to numbers that are easier to deal with:



- When multiplying decimals, remember that your answer MUST HAVE a number of decimal places EQUAL TO THE TOTAL AMOUNT OF DECIMAL PLACES of all the numbers being multiplied.
- When dividing decimals, "group and count":



#### **MULTIPLICATION AND DIVISION**

Remember that multiplication and division are inversely related:

$$3 \times 2 = 6$$
 so  $6 \div 2 = 3$  and  $6 \div 3 = 2$ 

DO THE SIGNS FIRST:

$$(-)\times(-)=(+)$$
  $(-)\div(-)=(+)$   
 $(+)\times(+)=(+)$   $(+)\div(+)=(+)$   
 $(-)\times(+)=(-)$   $(-)\div(+)=(-)$ 

- An ODD amount of multipliers or divisors result in NEGATIVE numbers.
- An EVEN amount of multipliers or divisors result in POSITIVE numbers.

#### **DISTRIBUTIVE PROPERTY**

The number outside the bracket multiplies EVERY term inside the bracket.
 ALWAYS DISTRIBUTE FIRST! (You can't separate the outside number from its bracket. Distribute first and then continue following BEDMAS).

#### **SOLVING EQUATIONS**

- Move EVERYTHING at once ("the river method"):
  - Choose the side for the variable that automatically makes it positive (it' easier).
  - Move ALL the variables to that side.
  - Move ALL numbers to the other side.

- REMEMBER THAT ANYTHING THAT GOES ACROSS THE "=" SIGN CHANGES TO ITS INVERSE: Adding to subtracting and vice versa; Multiplication to division and vice versa.
- Work everything out so that you end up with a positive variable with a coefficient of 1.

### **POWERS**



- Pair **LIKE-BASES only!**
- A base is **NEGATIVE only when the negative sign is INSIDE the bracket**.
- When the base is negative:
  - Negative base with EVEN exponent: +
  - Negative base with ODD exponent: -

$$(-9)^2 = (-9) \times (-9) = 81$$
  
 $(-9)^3 = (-9) \times (-9) \times (-9) = -729$ 

- The "laws" you learned **ONLY APPLY TO THE MULTIPLICATION AND DIVISION of EXPONENTS WITH EQUAL BASES:** 
  - When *multiplying* POWERS OF EQUAL BASE ------→ **ADD** the exponents
  - When *dividing* POWERS OF EQUAL BASE -----→ *SUBTRACT* the exponents.

A. 
$$6^6 \cdot 6^3$$

$$6^{6+3}$$
Add exponents.
$$6^9$$
B.  $n^5 \cdot n^7$ 

$$n^{5+7}$$

$$n^{12}$$
Add exponents.
$$n^{12}$$

$$\frac{2^6}{n^2} = 2^{6-2} = 2^4$$
They do not apply to apply to the Addition of Subtraction of Power

• When ADDING or SUBTRACTING any powers, YOU MUST USE THEIR STANDARD FORM instead. That is, their NUMERICAL VALUE:

$$3^2 + 3^3 = 3x3 + (3x3x3) = 9 + 27 = 36$$

• If the exponent = 0, then your answer is ALWAYS 1.

$$4^{0} = 1$$
  $(-3)^{0} = 1$   $100^{0} = 1$   
 $1,000,000^{0} = 1$   $(-\frac{1}{2})^{0} = 1$ 

- If nothing is showing (exponent-wise), it means the exponent is 1!

  4 is the same as  $(4)^1$
- Anytime you have (baseexponent) exponent, you MULTIPLY the exponents!

$$(a^{m})^{n} = a^{mn}$$
  
 $(3^{2})^{3} = 3^{2 \cdot 3} = 3^{6}$   
 $(x^{2})^{4} = x^{2 \cdot 4}$ 

• Exponents are ALSO DISTRIBUTED:

$$(4 yz)^3 = 4^3 \cdot y^3 \cdot z^3 = 64 y^3 z^3$$

## PERFECT SQUARES and SQUARE ROOTS

Make sure you know these perfect squares and square roots:

| 12 = 1             | $11^2 = 121$ |
|--------------------|--------------|
| $2^2 = 4$          | $12^2 = 144$ |
| $3^2 = 9$          | $13^2 = 169$ |
| $4^2 = 16$         | $14^2 = 196$ |
| $5^2 = 25$         | $15^2 = 225$ |
| $6^2 = 36$         | $16^2 = 256$ |
| $7^2 = 49$         | $17^2 = 289$ |
| $8^2 = 64$         | $18^2 = 324$ |
| 92 = 81            | $19^2 = 361$ |
| $10^2 = 100$       | $20^2 = 400$ |
| 1 <sup>3</sup> = 1 | $2^3 = 8$    |
| $3^3 = 27$         | $4^3 = 64$   |

| Square | <b>Roots</b> |
|--------|--------------|
|--------|--------------|

| $\sqrt{1} = 1$  | $\sqrt{36} = 6$   | $\sqrt{121} = 11$ |
|-----------------|-------------------|-------------------|
| $\sqrt{4} = 2$  | $\sqrt{49} = 7$   | $\sqrt{144} = 12$ |
| $\sqrt{9} = 3$  | $\sqrt{64} = 8$   | $\sqrt{169} = 13$ |
| $\sqrt{16} = 4$ | $\sqrt{81} = 9$   | $\sqrt{196} = 14$ |
| $\sqrt{25} = 5$ | $\sqrt{100} = 10$ | $\sqrt{225} = 15$ |

- Practice approximating square roots. When asked to approximate, and due to the ambiguity of it, I'm pretty convinced you'll be asked to approximate only to a nearest benchmark (integer, whole or given number).
- PERFECT SQUARES with zeroes MUST HAVE AN EVEN AMOUNT OF ZEROES TO BE PERFECT SQUARES:

| If a number of              | ends | with odd no | ımber of zeros then  |
|-----------------------------|------|-------------|----------------------|
| it is not a perfect square. |      |             |                      |
|                             |      |             |                      |
|                             |      |             |                      |
| Example:                    | 1)   | 30          | = Not perfect square |
|                             | 2)   | 5000        | = Not perfect square |
|                             | 3)   | 400000      | = Not perfect square |
|                             | 4)   | 100         | = Perfect square     |
|                             | 5)   | 60000       | = Perfect square     |

This method for finding square roots will work if the number is a multiple of 100, that is, it has an even number of zeroes, and starts with a perfect square.

Ex:  $\sqrt{2500} \qquad \qquad \sqrt{2500} \qquad \qquad \sqrt{2500} = \sqrt{25} \times \sqrt{100} \qquad \text{ parces}$   $\cdot \text{IT HAS AN EVEN NUMBER of Texoes} \qquad = 5 \times 10 = 50$   $\cdot 25 \text{ is a perfect square}$   $\sqrt{1440000} \qquad \qquad \cdot \sqrt{1440000} \qquad = \sqrt{144} \times \sqrt{10000} \qquad \text{ which is there are 4 zeroes}$   $= 12 \times 100 \qquad \text{ 2graps}$ Example 1: = 1200

PERCENTAGES



- To get 10%:
  Bring a decimal dot one place in: 10% of 45 is 4.5.
- 50% is HALF the amount.
- 20% = 10% + 10% 30% = 10% + 10% + 10% 40% = 50% - 10% or 10% + 10% + 10% + 10%
- To convert a percentage to decimal, DIVIDE by 100.

20 % = 20. = .20 = .2 = 0.2 
$$\sqrt{\phantom{0}}$$
  
2 % = 2. = .\_2 = .02 = 0.02  $\sqrt{\phantom{0}}$   
222 % = 222. = 2.22  $\sqrt{\phantom{0}}$   
0.02 % = 0.02 = .0002 = 0.0002  $\sqrt{\phantom{0}}$ 

• To convert a decimal to a percentage, MULTIPLY by 100.

 To get the % of any number, multiply such number by the decimal form of the percentage:

$$30\%$$
 of what is  $60?$ 
 $0.3 \times _{---} = 60$ 
 $60/0.3 = 200$ 

Actual Exam Questions

### P.A.T. Assessment Highlights 2017-2018 PART A (Non-Calculator)

- 1. What is the value of -3 (-4) + (-10)?
- 2. What is the value of  $2^3 + 2^0$ ?

Evaluate the following four expressions.

| Expression | #1 |
|------------|----|
|------------|----|

Expression #2

Expression #3

Expression #4

$$-(-2)^3$$

 $-2^{3}$ 

 $-(-3)^2$ 

 $-(-3^2)$ 

- 6. Which numbered expression shown above has the largest value and what is that value?
- 7. What is the value of  $\sqrt{\frac{5}{20}}$  expressed as a fraction in simplest form?

8. What is the value of 13.2 + 0.05 - 5.45?

Consider the inequality 3(x-2) > 4x - 5.



10. How many of the points labelled with a letter on the number line above satisfy the inequality?

- 11. To the nearest whole number, what is the approximate square root of 200?
- 12. What is 150% of 60?
- 13. In simplest form, what is the value of  $4 \times \left(2 + \frac{3}{4}\right)$ ?
- 14. Simplify, then evaluate  $\frac{(3^4)^3 \times 3^2}{3 \times 3^{10}}$ .
- 15. What is the value of  $-\frac{2}{5} + 0.5 + 0.75$  expressed as a fraction in simplest form?



17. Which point best represents the location of  $\sqrt{\frac{17}{81}}$  on the number line shown above?

- 18. What is the value of  $(2^3 3^2)^2$ ?
- **20.** What is the value of  $\sqrt{\frac{1}{9}} \times \sqrt{\frac{36}{49}} \times \sqrt{49\ 000\ 000}$ ?

## P.A.T. Assessment Highlights 2017-2018



District die 10110 wille 1001 expressions.

| Expression #1      | Expression #2 | Expression #3      | Expression #4       |
|--------------------|---------------|--------------------|---------------------|
| -(-2) <sup>3</sup> | -23           | -(-3) <sup>2</sup> | -(-3 <sup>2</sup> ) |

6. Which numbered expression shown above has the largest value and what is that value?

See next page





Consider the inequality 3(x-2) > 4x - 5.



10. How many of the points labelled with a letter on the number line above satisfy the inequality?

. First (ALWAYS) DISTRIBUTE FIRST

3(x-2) = 3x-6

X is less than - 1

. Solve the inequal; Ty

3x-6>4x-5/-6>x-5/(-1>x)

11. To the nearest whole number, what is the approximate square root of 200?



V225 - 200 is between the perfect Squares 196 and 225

15 · 200 is much closer to 196 than 225.

Method 2 12. What is 150% of 60?

100 % is 60

(1.5) (60) = 90

50% is half of 60 = 30 (100+50)% = 60+30 = 90

13. In simplest form, what is the value of  $4 \times \left(2 + \frac{3}{4}\right)$ ?  $\frac{3}{4} = 0.75$  or  $\frac{8}{4} + \frac{3}{4} = \frac{11}{4}$ 

· BRACKETS FIRST

4x 1 = (11

14. Simplify, then evaluate  $\frac{(3^4)^3 \times 3^2}{3 \times 3^{10}}$ .  $(3^4)^3 = 3^{4 \times 3} = 3^{12}$   $\frac{3^{12} \times 3^2}{3' \times 3^{10}} = \frac{3^{12+2}}{3^{1+10}} = \frac{3^{14}}{3''} = \frac{3^{14}}{3^{14}} = \frac$ 

Same base > Divide -> Subtract exponents

15. What is the value of  $-\frac{2}{5} + 0.5 + 0.75$  expressed as a fraction in simplest form?

50

denominator  $-\frac{2}{5}$   $\frac{5}{10}$   $\frac{15}{100}$   $\left(-\frac{2}{5}\right)^{20}$  =  $-\frac{40}{100}$  +  $-\frac{40}{100}$   $+\frac{50}{100}$   $+\frac{75}{100}$ 

Compiled by Mr. Martínez 
$$\left(\frac{5}{16}\right)_{18}^{10} = \frac{50}{100} - \frac{40 + 50 + 75}{100}$$



Which point best represents the location of  $\sqrt{\frac{17}{81}}$  on the number line shown above?

Appeax.  $\sqrt{\frac{17}{81}} \approx \sqrt{\frac{16}{81}} = \frac{\sqrt{16}}{\sqrt{81}} = \frac{4}{9}$  but since then 4 then  $\sqrt{\frac{19}{9}}$  Point 2

18. What is the value of  $(2^3 - 3^2)^2$ ?

Distribute:  $2^{3\times 2} - 3^{2\times 2} = 2^6 - 3^4 \rightarrow 3^4 = 81$ 

What is the value of  $\sqrt{\frac{1}{9}} \times \sqrt{\frac{36}{49}} \times \sqrt{49\ 000\ 000}$ ?

even amount of 0, so it is perfect square

000

J x 6 X 7000

42:21= 2

VE = 3

Compiled by Mr. Martínez