NOMBRE:

P.A.T Prep

Perfect and Non-Perfect Squares Square Roots - Approx. Square Roots

St. Brendan School Mr. Martínez Ose the jouowing information to answer numerical-response question 0.

Numerical Response

6

Match each point on the number line above to the corresponding number in the table below.

Code	Number
1	√37
2	$\sqrt{8}$
3	$\sqrt{22}$
. 4	$\sqrt{41}$
5	$\sqrt{6}$
6.	$\sqrt{50}$
7	$\sqrt{27}$
8	$\sqrt{32}$

a little below 9
a bit below 5 (4.7)
closer to 6 than 7 = 0 y
2. something
very close to 7
vory close to 5 but o does
less than 6

(Record all four digits of your answer in the numerical-response section on the answer sheet.)

Use the following information to answer numerical-response question 6.

Pat arranges three portraits from smallest to largest based on area. Portrait 2 is square, and its side length, measured in centimetres, is a whole number.

Numerical Response

6. The side length of portrait 2 is _____ cm.

(Record your answer in the numerical-response section on the answer sheet.)

STRAND: NUMBER

complexity: LOW

Use the following information to answer numerical-response question 10.

		Square 3
Square 1	Square 2	
Square 4		
	S	quare 5

Numerical Response

Which two squares shown above represent the best benchmarks for estimating the value of $\sqrt{43}$?

Answer: Square _____ and Square ____

(Record both digits of your answer in any order in the numerical-response section on the answer sheet.)

Numerical Response

The number of perfect squares that are whole numbers between 2 and 20 is ______.

(Record your answer in the numerical-response section on the answer sheet.)

In estimating $\sqrt{70}$, which two perfect square numbers provide the **best** two benchmarks to estimate your answer?

- A. 49 and 64
- B. 64 and 100
- C. 49 and 81
- D. 64 and 81

The letters p and q in the expression $\sqrt{\frac{p+q}{2}}$ represent consecutive perfect square numbers.

3. Which of the following number lines **best** represents the value of $\sqrt{\frac{p+q}{2}}$?

Use the following information to answer question 1.

$$\sqrt{51}$$
 $\sqrt{55}$ $\sqrt{61}$ $\sqrt{66}$ $\sqrt{71}$ $\sqrt{77}$ $\sqrt{81}$ $\sqrt{88}$

- 1. How many of the square roots shown above have a value that is between 7.8 and 8.8?
 - **A.** 2
 - **B.** 3
 - C. 4
 - **D.** 5

The square roots of two rational numbers are represented on the number line shown below.

- 5. If Q is located between points P and R on the number line above, then which of the following square roots could **not** represent Q?
 - A. $\sqrt{\frac{324}{81}}$
 - B. $\sqrt{\frac{256}{9}}$
 - C. $\sqrt{\frac{225}{64}}$
 - **D.** $\sqrt{\frac{169}{4}}$