NOMBRE:	

P.A.T Prep

Areas / Areas from Volume/
Problems that combine Area and Perfect Squares

St. Brendan School Mr. Martínez

REAS Squared: m2, units: m2,	Cm~
The diagram shown below is a square and has a perimeter of 8 cm.	
Apprinate R. C.	
umerical Response What is the total area of the white rectangles and the black squares?	
Answer: cm ²	
(Record your answer in the numerical-response section on the answer sheet.)	
When a square piece of paper is folded in half, the resulting perimeter of 24 cm.	figure has a
Numerical Response	
4. The area of the square piece of paper before it is folded is	cm ² .
(Record your answer in the numerical-response section on the answer sheet	et.)
13. If the side length of a cube is tripled, then the surface area of the cube will increase by a factor of A. 6 Actually TRY TOUT B. 9	

· START with side length C. 12D. 27

14. What is the total surface area of the 3-D object shown above?

A. 120 cm^2

B. 100 cm^2

 \mathbb{C} . 88 cm²

D. 72 cm^2

STRATEGY: DRAW 6 VIEWS:

FRONT, back, top, bottom, Right, left

· add all faces

To side length is 2, then you must multiply CAREFUL total faces × 2! The following 3-D object is composed of identical cubes. The volume of the 3-D object is 56 cm³.

- 13. The surface area of the 3-D object above is
 - $A. 30 \text{ cm}^2$
 - **B.** 60 cm^2
 - C. 120 cm^2
 - D. 144 cm^2
- 18. If the painted object is separated into individual cubes, then the total area of the **unpainted** surfaces will be

A 3-D object made of $2 \text{ cm} \times 2 \text{ cm} \times 2 \text{ cm}$ cubes is dipped in paint.

The three composite objects shown below are each constructed from 8 identical cubes.

the composite objects?

Object 2

- Object 3
- A. Object 2 has a greater surface area than Object 1.
- 34. Which of the following statements correctly describes the relationship between
 - B. The surface areas of the three objects are the same
 - C. Object 3 has a greater surface area than both Object 1 and Object 2.
 - The surface area of Object 1 is equal to the surface area of Object 3.

The local movie theatre sells two sizes of popcorn. The large bag of popcorn is a scale enlargement of the small bag.

Numerical Response

2. The difference between the exterior surface area of the large popcorn bag and the small popcorn bag is _____ cm².

(Record your answer in the numerical-response section on the answer sheet.)

- 13. Which expression represents the surface area of the 3-D object?
 - **A.** $6h^2 2\pi r^2 + 2\pi rh$
 - **B.** $4h^2 2\pi r^2 + 2\pi rh$
 - C. $6h^2 + 2\pi r^2 2\pi rh$
 - D. $4h^2 + 2\pi r^2 2\pi rh$

TROBLEMS THAT COMBINE

Perfect Squares

The area, A, of four square carpets is shown below.

Carpet 1

 $A = 13 \text{ m}^2$

Carpet 2

Carpet 3

 $A = 4.4 \text{ m}^2$

Carpet 4

- 2. Which carpet will cover the most floor area, without touching a wall, when it is laid flat in a square room that has a width of 4.5 m?
 - A. Carpet 1
 - B. Carpet 2
 - C. Carpet 3
 - D. Carpet 4

A square carpet covers 37.5% of the floor area of a rectangular room, as shown below.

4. What is the side length of the carpet shown a ?

B. 6 m

C. 5 m

D. 4 m

hape and face
Use the following information to answer numerical-response question 6.

5.0.=2

4:

Darren joins the rectangular prisms shown below to create a new rectangular prism that has the greatest possible surface area. He then paints all visible surfaces. After the paint dries, Darren separates the two prisms.

Numerical Response

6. The total area of both prisms that has **not** been painted is _____ cm².

(Record your answer in the numerical-response section on the answer sheet.)

27