Quick Review

For any multiplication of 2 different factors, there are 2 related division facts: For $4 \times 3 = 12$, the related division facts are: $12 \div 3 = 4$ and $12 \div 4 = 3$

The same rules apply to the product of 2 integers. For (-2)(+5) = -10, the related division facts are:

$$(-10) \div (-2) = +5$$
 and $(-10) \div (+5) = -2$

dividend divisor quotient

The quotient of 2 integers with the same sign is positive. $(+10) \div (+2) = +5$ $(-10) \div (-2) = +5$

➤ The quotient of 2 integers with different signs is negative.

$$(+10) \div (-2) = -5$$
 $(-10) \div (+2) = -5$

➤ A division expression can be written using a division sign, $(-24) \div (-6)$, or it can be written as a fraction, $\frac{(-24)}{(-6)}$.

Practice

1. For each product, complete the 2 related division facts and name the sign of the quotient.

Multiplication	n Fact	Related Division Facts	Sign of Quotient
(+2)(+3) = +	-6	(+6) ÷ (+2) =	
		$(+6) \div (+3) = $	
(-2)(-3) = +	6	$(+6) \div (-2) = $	1 la marcop a m
		$(+6) \div (-3) = $	medicus temeny ser (4)
(+2)(-3) = -	6	(-6) ÷ (+2) =	in tribulo reputsible o
		$(-6) \div (-3) = $	c - naskind mailten t (8
(-2)(+3) = -	6	$(-6) \div (-2) = $	Distribute 2 Calc Make C To elde add
		(-6) ÷ (+3) =	= [i-] + (i,ki+) (c

2. Use your results in question 1. Complete these 2 statements.

When 2 integers have the same sign, their quotient is ______

When 2 integers have different signs, their quotient is __

3. Find a pattern rule for each division pattern. Extend the pattern 3 more rows.

b)
$$(-12) \div (-4) = +3$$

$$(+4) \div (-2) = -2$$

$$(-8) \div (-4) = +2$$

$$(+2) \div (-2) = -1$$

$$(-4) \div (-4) = +1$$

$$(0) \div (-2) = \underline{\hspace{1cm}} (0) \div (-4) = \underline{\hspace{1cm}}$$

$$(0) \div (-4) =$$

Use the last 3 rows of each pattern. Complete these statements.

When both the dividend and divisor are negative, the quotient is _____

When the dividend is positive and the divisor is negative, the quotient is _____

4. Find each quotient.

a)
$$(+15) \div (-3) =$$

b)
$$(-32) \div (+4) =$$

a)
$$(+15) \div (-3) =$$
 _____ b) $(-32) \div (+4) =$ ____ c) $(+72) \div (-8) =$ ____

HINT

To find a pattern rule,

look for a pattern in the dividends and in the quotients.

d)
$$(-54) \div (-9) =$$

e)
$$(-72) \div (+6) =$$

d)
$$(-54) \div (-9) =$$
 _____ e) $(-72) \div (+6) =$ ____ f) $(+88) \div (+11) =$ ____

g)
$$(-42) \div (-6) =$$

h)
$$(+108) \div (+9) =$$

g)
$$(-42) \div (-6) =$$
 ______ i) $(-56) \div (+7) =$ ______ i) $(-56) \div (+7) =$ _____

5. Use 2 of these 5 integers. Write a division fact with each quotient.

$$-2 +3$$

- a) a quotient of -2
- b) the greatest quotient
- c) the least quotient
- **d)** a quotient between –5 and –10
- **6.** Use a calculator to divide.

a)
$$(+247) \div (-13) =$$
 _____ b) $(-851) \div (-37) =$ _____

b)
$$(-851) \div (-37) =$$

c)
$$\frac{(-748)}{(-68)} =$$

d)
$$\frac{(-1485)}{(+33)} =$$

