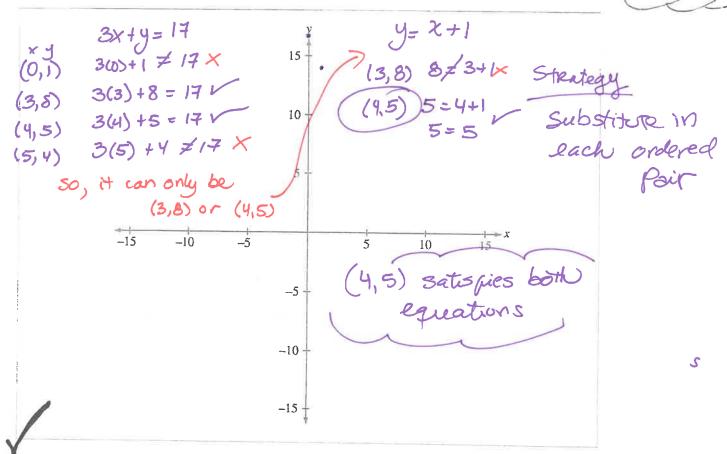

NAME:				
TAX SYATIS				

Math P.A.T. Prep

Graphing Linear Relations
Relations From Tables and Graphs
Interpreting Linear Relation Graphs - SOLUTIONS



St. Brendan School Mr. Martínez

33. Which of the following equations describes line segment *AB* on the Cartesian plane shown above?

When Given an EQUATION and NO GRAPH + MAKE A TABLE

- 24. The graphs of the relations 3x + y = 17 and y = x + 1 intersect at the point with the coordinates
 - A. (0.1) B. (3.8) C. (4,5)

UNLESS TOLD OTHERWISE, USE X=0,1,2,3

For 3x+y=17 0 17 1 1 2 3

FOR Y=X+1 X | Y 0 1 2

Telations FROM TABLES

RATEGY 1 (EASIEST)

- CHOOSE an ordered pair on the table
- · Substitute these values on each of the answers.
- Only one, the Right one will match!

Rai saves a part of his earnings each week. He uses the pattern below to decide how much of his weekly earnings he will save.

	Weekly Earnings (e)	Weekly Savings (s)
	\$10	\$7
.	\$12	\$8
	\$14	\$9
	\$16	\$10

Which of the following equations could represent the relationship between Raj's weekly savings, s, and his weekly earnings, e?

A.
$$s = e - 3$$

B.
$$s = e - 6$$

C.
$$x = 2.0(e - 5) - 3$$

D.
$$s = 0.5(c + 10) - 3$$

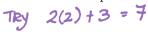
- Notice that 5 goes up by I.

- Second term is - 3

A. 7= 10-3 V B. 7=10-6× C. 7 = 2(10-5)-D. 7= 0.5 (10+10). 7=0.5 (20)-コェチ レ SO ITIS A, C, D PAIR 2 e=12 5=8 A. 8 = 12 - 3 X C. 8 = 2(12-5) - 8 = 2(4) - 3 D. 8-0.5(22) 8=11-3

David creates the table of values shown below based on designs he assembles using black and white 2-D shapes.

Number of Black Shapes (b)	Number of White Shapes (w)
2	7
3	9 4
4	11


Which of the following equations represents the linear relationship between the number of black shapes and the number of white shapes?

A.
$$5b - 3 = w$$

B.
$$4b - 1 = w$$

C.
$$3b + 1 = w$$

D.
$$2b + 3 = w$$

An art store is having a sale. The table below shows the regular price, r, and the sale price, s, of several items.

Item	Regular Price (r)	Sale Price (s)
Glue	\$5.00	\$4.25 7
Brushes	\$7.00	\$5.95
Paper	\$10.00	\$8.50
Crayons	\$12.00	\$10.20

Which of the following equations was used to calculate the sale prices?

A.
$$s = 0.15r$$

B.
$$s = 0.85r$$

C.
$$s = r - 0.75$$

D.
$$s = r - 0.85$$

Members of a recreation centre pay a one-time registration fee in addition to a fixed monthly fee of \$15. The following table shows the total amount paid to be a member of the centre for a certain number of months.

Number of Months	Total Amount Paid		
4	\$135		
6	\$165 2		
12	\$255		

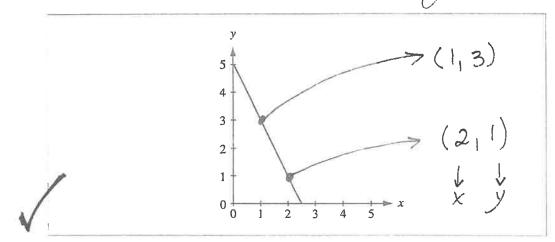
Numerical Response

\$40 For 4 months

\$15m = 4 months

According to the information above, what is the cost of the one-time registration fee? 4%

Answer:



dollars

Relations FROM GRAPHS

STRATEGY.

- · From the graph, choose 2 ordered pairs
- . Substitute on each possible answer given ()

Use the pairs that are the easiest to see

36. Which of the following equations represents the relationship between the variables x and y in the graph shown above?

A.
$$y = 5 - 2x$$

B.
$$y = 2x - 5$$

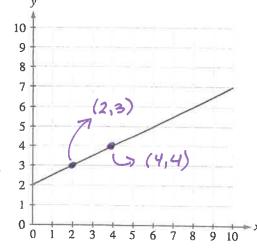
C.
$$y = 5 - x$$

D.
$$v = x - 5$$

Since $y = 5-2 \times 0$ $\omega \partial p (ed, 15e)$ (2,1) 1 = 5 - 2(2)V3 + checks!

So for 1 Possible
The Possible
Solution

· Find easy to find ordered Pairs

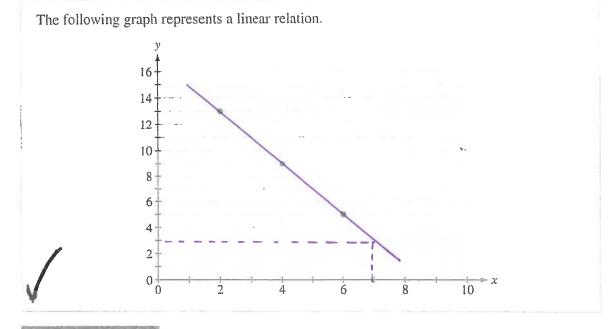

· Substitute

A. 3= (0.5)2+2,

B. 3=(0.9)2-2 = 3 = -1 X

C. 3=2(2)+4 => 3×8×

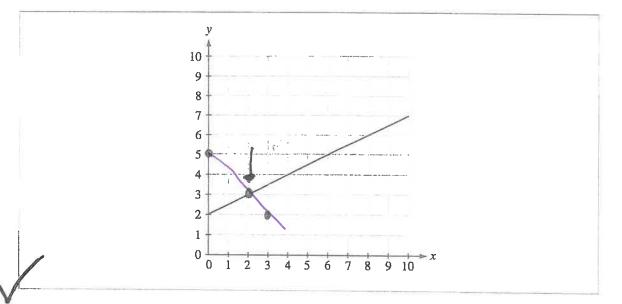
0. 3 = 2(2) = 4 => 3 = 0×


- **A.** y = 0.5x + 2
- **B.** y = 0.5x 2
- C. y = 2x + 4
- **D.** y = 2x 4

(4,4)

- A. 4=(0.5)4+2
 - 4=4

38. The equation representing the linear relation on the graph shown above is


50 y=0.5x+2

the ph graph (Extrapolate)

Numerical Response

Based on the linear relation shown above, when the y-coordinate is 3, the x-coordinate is _______.

30. The line created by the relation y = 5 - x will intersect the line shown on the graph above at

- **A.** (0, 5)
- **B.** (5, 0)
- C. (2, 3)

D. (3, 2)

try each of the Ordered pairs given

DMETIMES ... MAKING A

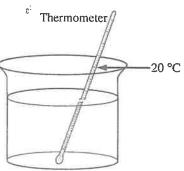
Nathan completed a 5 km run on his first day of training for a cross-country race. He increased the length of his next training runs by 1.5 km each time.

- Which of the following equations could be used to determine the distance (d) that Nathan ran on each training run (r)?
 - d = 1.5rA.
 - d = 5rВ.
 - C. d = 1.5 + 3.5r
 - d = 3.5 + 1.5rD.

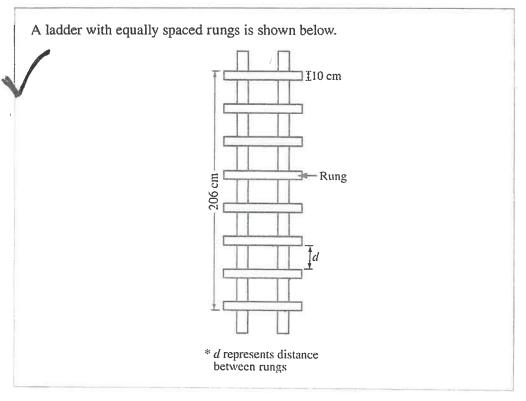
STRATEGY: MAKE IT FOR YOURSELF

and Start with 1

Day 1 - 5 km
- 1Run 2 - 6.5 km → Now try substitution
Run 3 - 8 km


D. dz3.5 + 1.5r B = 3.5 + 1.5(3)

8= 3.5+4.5 => 18=8


A. 5=1.5(1) X B. 6.5= 5(2) X C. 65 = 1.5 + 3.5(2) D. 6.5= 3.5+1.5(2)

In a science experiment, a solution has an initial temperature of 20 °C, as shown below.

- 35. If the temperature, T, of the solution drops 2.8 °C/h, then which of the following equations can be used to calculate the temperature of the solution after 4 hours?
 - $T = 20 \, ^{\circ}\text{C} (2.8 \, ^{\circ}\text{C/h} \times 4 \, \text{h})$
 - **B.** $T = 20 \,^{\circ}\text{C} + (2.8 \,^{\circ}\text{C/h} \times 4 \,\text{h})$
 - C. $T = (20 \, ^{\circ}\text{C} - 2.8 \, ^{\circ}\text{C/h}) \times 4 \, \text{h}$
 - D. $T = (20 \, ^{\circ}\text{C} + 2.8 \, ^{\circ}\text{C/h}) \times 4 \, \text{h}$

Which of the following equations can be used to calculate the distance, d, between each ladder rung?

A.
$$d = 206 - 8(10) \div 7$$

B.
$$d = 206 - 8(10) \times 7$$

C.
$$d = \frac{7}{206 - 8(10)}$$

D.
$$d = \frac{206 - 8(10)}{7}$$

206 total ? whatever is left is minus 8(10) Rungs I the total distance filled by d, which are 7 So distance left

A truck heads north at a constant speed of 80 km/h. A car leaves 20 minutes later heading north along the same road and travelling at a constant speed of 90 km/h.

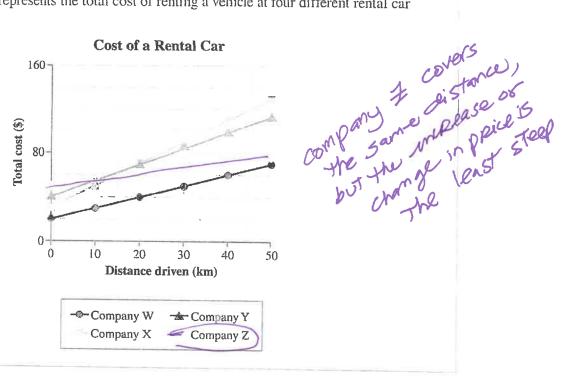
Which of the following equations could be used to determine how much time in hours, t, the car travels until it catches up to the truck?

A.
$$90t = 80\left(t - \frac{1}{3}\right)$$

B.
$$90t = 80\left(t + \frac{1}{3}\right)$$

C.
$$90t = 80(t - 20)$$

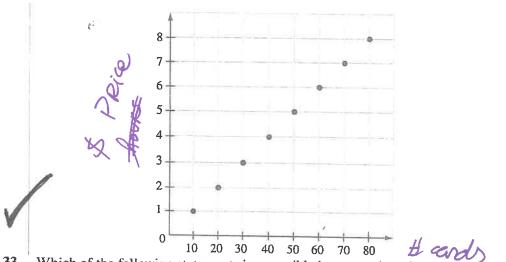
D.
$$90t = 80(t + 20)$$


In Represents 20 minutes

Looking for when 90t is

equal to 80t - 20 min

INTERPRETING LINEAR REL


The cost of renting a car includes the base fee and a charge for each kilometre driven. The graph below represents the total cost of renting a vehicle at four different rental car companies.

13. Which rental car company has the smallest charge for each kilometre driven?

- A. Company W
- B. Company X
- C. Company Y
- D. Company Z

Various points have been plotted on the graph below. The title of the graph and the labels of the axes have been omitted.

- 33. Which of the following statements is a possible interpretation of the graph above?
 - A. Nicole earns \$20 for each hour she works. , No she carns to
 - B. For every 10 swimmers, 2 lifeguards are needed. No, 1 is needed
 - C. For every 10 pieces of candy Simone buys, she pays \$1.
 - D. A connectors at a constant speed of 2 Km every 30 minutes