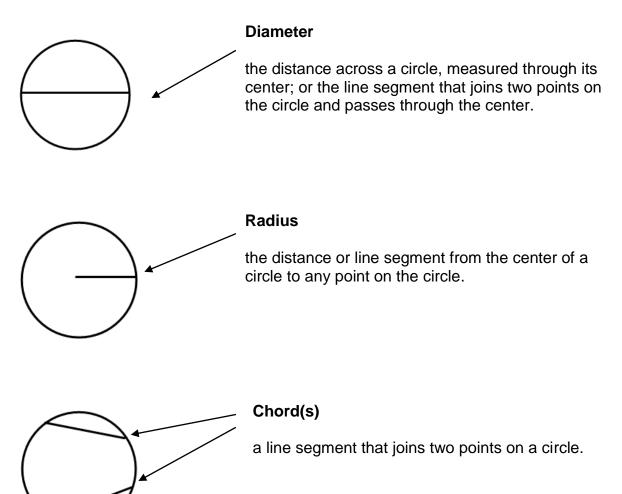
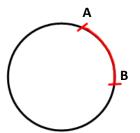
Unit 8: Circle Geometry Introduction: Definitions



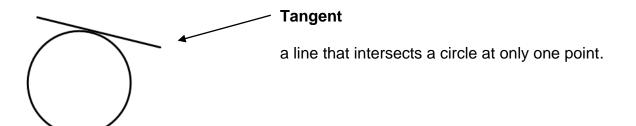


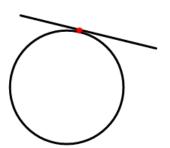
Arc

A segment of the circumference of a circle.

Minor Arc

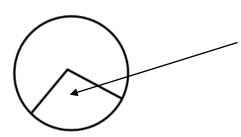
The shorter of two arcs between two points on a circle. For example: \overrightarrow{AB}





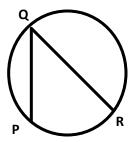
Point of Tangency

the point where a tangent intersects a circle



Central Angle

An angle whose arms are radii of a circle.

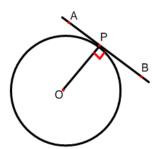


Inscribed Angle

An angle in a circle with its vertex and endpoints of its arms on the circle.

For example, \angle PQR

Section 8.1 Properties of Tangents to a Circle

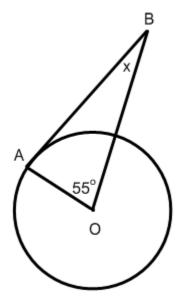


Tangent-Radius Property

A tangent to a circle is perpendicular to the radius at the point of tangency. $\angle APO = \angle BPO = 90^{\circ}$

Example Problems

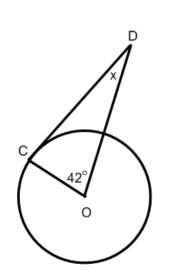
A) Point O is the center of a circle and AB is tangent to the circle. In OAB, $\angle AOB = 55^{\circ}$. Determine the measure of $\angle OBA$.



Since $\angle A = 90^{\circ}$ and $\angle 0 = 55^{\circ}$ Then 90 + 55 = 145 The three angles in a triangle

add to 180° . So $\angle x = 180 - 145 = 35^{\circ}$.

Try to find the missing angles in the following diagrams





 $x = 76^{\circ}$

 $x = 48^{\circ}$

Application Example



Since AC is a tangent ... \angle BDA = \angle BDC = 90⁰

Find x

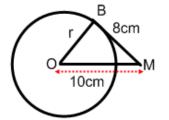
B)

x + 90 + 57 = 180 x + 147 = 180 x + 147 - 147 = 180 - 147 x = 33°

Find y

y + 90 + 35 = 180 y + 125 = 180 y + 125 - 125 = 180 - 125 $y = 55^{\circ}$ Using the Pythagorean Theorem in a Circle

1.



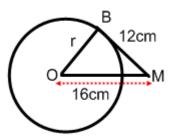
Since BM is a tangent we know that \angle OBM = 90⁰.

$$a^{2} + b^{2} = c^{2}$$

 $8^{2} + b^{2} = 10^{2}$
 $64 + b^{2} = 100$
 $b^{2} = 100 - 64$
 $b^{2} = 36$
 $b = \sqrt{36}$
 $b = 6 \text{ cm}$

Try this one!

2.



Since BM is a tangent we know that $\angle OBM = 90^{\circ}$.

$$a^{2} + b^{2} = c^{2}$$

$$12^{2} + b^{2} = 16^{2}$$

$$144 + b^{2} = 256$$

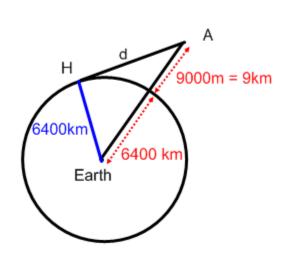
$$b^{2} = 256 - 144$$

$$b^{2} = 112$$

$$b = \sqrt{112}$$

$$b = 10.6 \text{ cm}$$

3. An airplane is cruising at an altitude of 9000m. A cross section of the earth is a circle with a radius approximately 6400km. A passenger wonders how far she is from a point H on the horizon she sees outside the window. Calculate the distance to the nearest kilometer.



$$a^{2} + b^{2} = c^{2}$$

$$d^{2} + 6400^{2} = 6409^{2}$$

$$d^{2} + 40960000 = 41075281$$

$$d^{2} = 41075281 - 40960000$$

$$d^{2} = 115281$$

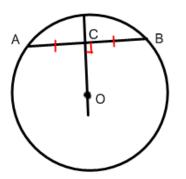
$$d = \sqrt{115281}$$

$$d = 339.5 \text{ km}$$

8.2 Properties of Chords in a Circle

In any circle with center O and chord AB:

- If OC bisects AB, then $OC \perp AB$
- If $OC \perp AB$, then AC = CB
- The perpendicular bisector of AB goes through the center O.



Remember:

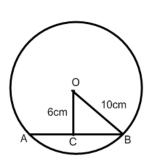
Perpendicular means there is a 90° angle.

Bisector means it is divided into 2 equal parts

If AC = 10cm, then BC = 10cm

Example #1

O is the center of the circle. Find the length of chord AB.

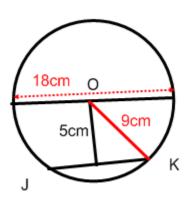


- Solution: Use the Pythagorean Theorem to solve for BC $a^2 + b^2 = c^2$
- $a^{2} + b^{2} = c^{2}$ $6^{2} + BC^{2} = 10^{2}$ $36 + BC^{2} = 100$ $BC^{2} = 100 - 36$ $b^{2} = 64$ $BC = \sqrt{64}$ BC = 8 cm

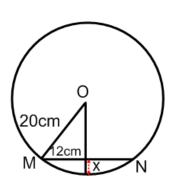
AC=BC = 8cmSo the length of AB is 2 x 8cm = 16cm

Example # 2

The diameter of a circle is 18cm. A chord JK is 5cm from the center. Find the length of the chord.



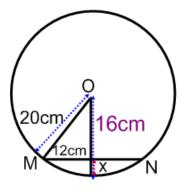
 $a^{2} + b^{2} = c^{2}$ $5^{2} + b^{2} = 9^{2}$ $25 + b^{2} = 81$ $b^{2} = 81 - 25$ $b^{2} = 56$ $b = \sqrt{56}$ b = 7.5 cm If b = 7.5 cm, then the chord JK is 2 x 7.5cm = 15cm **Example #3** A chord MN is 24cm. The radius of a circle is 20cm. Find the length of x.



Since the chord is 24cm, half it is 12cm. Use the Pythagorean Theorem to find the missing side of the triangle.

$$a^{2} + b^{2} = c^{2}$$

 $12^{2} + b^{2} = 20^{2}$
 $144 + b^{2} = 400$
 $b^{2} = 400 - 144$
 $b^{2} = 256$
 $b = \sqrt{256}$
 $b = 16 \text{ cm}$



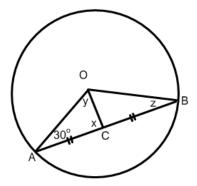
Radius is 20 cm ALL the way around the circle!

The length of x must be 20 cm - 16 cm = 4 cm

Example # 4:

Finding Angle Measurements

x , y and z.



Solution

Since OC bisects chord AB, OC is perpendicular to AB. Therefore, $x = 90^{\circ}$ The 3 angles in a triangle must add up to 180° . y + 30 + 90 = 180y + 120 = 180y + 120 = 180 - 120

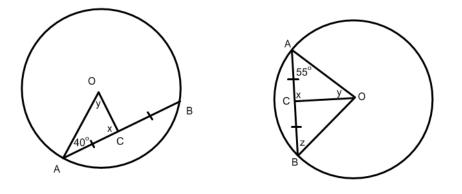
Since radii are equal (OA = OB) and $\triangle OAB$ is isosceles, z = 30°.

Remember that in an isosceles triangle the 2 base angles are equal.

Try These

A).

 $y = 60^{\circ}$



 $x = 90^{\circ} \text{ and } y = 50^{\circ}$

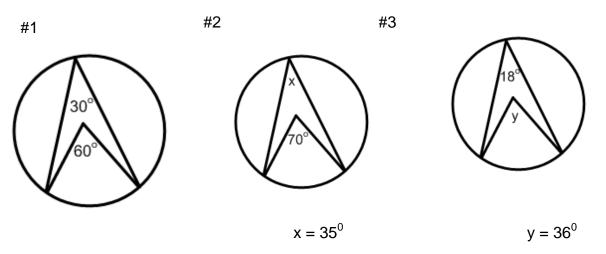
 $x=90^{\circ}\,$, $y=35^{\circ}\,$ and $z=55^{\circ}\,$

Section 8.3 Properties of Angles in a Circle

Central Angle and Inscribed Angle Property

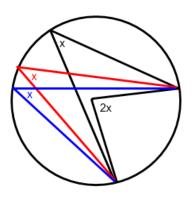
The measure of a central angle is twice the measure of an inscribed angle subtended by the same arc.

Examples

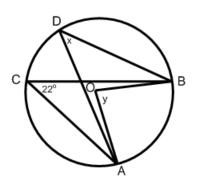


Inscribed Angles Property

Inscribed angles subtended by the same arc are equal.



Examples #1

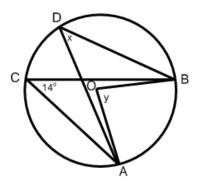


 \angle ACB and \angle ADB are inscribed angles subtended by the same arc AB. So, \angle ACB = \angle ADB. x = 22⁰.

Central angle \angle AOB and inscribed angle \angle ACB are both subtended by arc AB. \angle AOB = 2 x \angle ACB y = 2 x 22 y = 44⁰

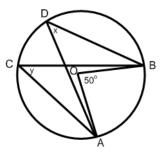
#2

#3



 \angle ACB and \angle ADB are inscribed angles subtended by the same arc AB. So, \angle ACB = \angle ADB. x = 14⁰.

Central angle \angle AOB and inscribed angle \angle ACB are both subtended by arc AB. \angle AOB = 2 × \angle ACB y = 2 × 14 y = 28⁰



Since both inscribed angles are subtended from the same arc as the central angle

$$\angle ACB = \angle ADB = \frac{1}{2} \angle AOB.$$

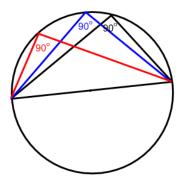
$$y = x = \frac{1}{2} (50^{\circ})$$

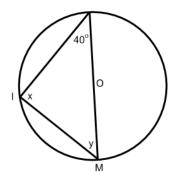
$$y = x = 25^{\circ}$$

Angles in a Semicircle Property

Inscribed angles subtended by a semicircle (half the circle) are right angles. This means these angles use the diameter.

Example #1 Find the missing angle measures.



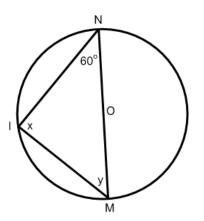


 \angle MIN is an inscribed angle subtended by a semicircle. So, x = 90⁰.

Since three angles in a triangle add to 180⁰,

y + 90 + 40 = 180 y + 130 = 180 y + 130 - 130 = 180 - 130 $y = 50^{0}$





 \angle MIN is an inscribed angle subtended by a semicircle. So, x = 90⁰.

Since three angles in a triangle add to 180⁰,

y + 90 + 60 = 180 y + 150 = 180 y + 150 - 150 = 180 - 150 $y = 30^{0}$