4.4 Matching Equations and Graphs

FOCUS Match equations and graphs of linear relations.

Example 1

Matching Equations with Graphs

Match each graph on the grid with its equation.

$$y = x$$

$$y = -x$$

Solution

Substitute x = -1, x = 0, and x = 1 in each equation.

$$y = x$$

Х	У
-1	-1
0	0
1	1

We chose to use x-values of -1, 0, and 1 because they're often easy to substitute.

Points (-1, -1), (0, 0), and (1, 1) lie on

Graph B.

So, y = x matches Graph B.

y = -x

Х	У
-1	1
0	0
1	-1

Points (-1, 1), (0, 0), and (1, -1)

lie on Graph A.

So, y = -x matches Graph A.

Check

1. Which equation describes the graph at the right?

$$y = x + 2$$

Х	y = x + 2	
0	$y = 0 + 2 = _{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_$	
1	y = + 2 =	_
2	y = + 2 =	

y = x - 2

X	y = x - 2
0	y = 2 =
1	y = =
2	y = =

-2

Points (_____), (_____), and (_____) do not lie on the graph.

Points (), (), and (____) lie on the graph.

So, the equation $y = \underline{\hspace{1cm}}$ describes the graph.

Example 2

Identifying a Graph Given Its Equation

Which graph on this grid has the equation y = x - 1?

Solution

Pick 2 points on each graph and check if their coordinates satisfy the equation.

For Graph A, use: C(-1, 0) and D(0, 1)

Check if C(-1, 0) satisfies the equation y = x - 1.

Substitute x = -1 and y = 0 in y = x - 1

Left side: y = 0

Right side: x - 1 = (-1) - 1

= -2

Since C does not work, we do not have to check for D.

The left side does not equal the right side.

So, Graph A does not have equation y = x - 1.

Verify that the other graph does match the equation.

For Graph B, use: E(0, -1) and F(1, 0)

Check if E(0, -1) satisfies the equation y = x - 1.

Substitute x = 0 and y = -1 in y = x - 1

Left side: y = -1

Right side: x - 1 = 0 - 1

= -1

The left side does equal the right side.

So, E(0, -1) lies on the line represented by y = x - 1.

Check if F(1, 0) satisfies the equation y = x - 1.

Substitute x = 1 and y = 0 in y = x - 1

Left side: y = 0

Right side: x - 1 = 1 - 1

= 0

The left side does equal the right side.

So, F(1, 0) lies on the line represented by y = x - 1.

So, Graph B has equation y = x - 1.

Check

1. Show that this graph has equation y = 2x + 1.

Use the points labelled on the graph.

For A(0, 1): Substitute x = 0 and y = 1 in y = 2x + 1.

Left side: y = Right side: 2x + 1 = =

=

For B(1, 3): Substitute $x = ____$ and $y = ____$ in y = 2x + 1.

Left side: y =____

Right side: 2x + 1 =

Practice

1. Show that the equation y = x + 2 matches the graph.

Fill in the table of values.

-	Х	y = x + 2
	-2	y = -2 + 2 =
	-1	y =+ 2 =
	0	y = =

From the table:

Points (_____), (_____), and (_____) lie on the graph.

So, y = x + 2 matches the graph.

2. Match each equation with a graph.

$$y = 3x$$

$$y = -3x$$

Fill in the tables of values.

Х	y = 3x	
-1	$y = 3(_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	
0	$y = 3(_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	_) =
1	$y = 3(_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	=

X	y = -3x
-1	y = -3() =
0	y =() =
1	y = =

From the tables:

y = 3x has points (_____), (_____), and (_____).

These points lie on Graph ______.

So, y = 3x matches Graph _____.

y = -3x has points (_____), (_____), and (_____).

These points lie on Graph ______.

So, y = -3x matches Graph _____.

3. Match each equation with a graph.

$$y = 1 - x$$

$$y = x - 1$$

Fill in the tables of values.

Х	y = 1 - x
-1	y = 1 - () =
0	y = 1 =
1	y = 1 - =

Х	y = x - 1
-1	y = =
0	y = =
1	y = =

From the tables:

$$y = 1 - x$$
 has points (_____), (_____), and (_____).

These points lie on Graph _____.

So,
$$y = 1 - x$$
 matches Graph _____.

$$y = x - 1$$
 has points (_____), (_____), and (_____).

These points lie on Graph _____.

So,
$$y = x - 1$$
 matches Graph _____.

4. Which graph has equation y = x - 3?

For C(-3, 0):

Left side:
$$y =$$

Left side:
$$y =$$
 Right side: $x - 3 =$

Left side:
$$y =$$

Left side:
$$y =$$
 Right side: $x - 3 =$

For F(3, 0):

Left side:
$$y =$$

Left side:
$$y =$$
 Right side: $x - 3 =$

