Name:		

Class:	Date:

Peview Quizzes

Multiple Choice

Identify the choice that best completes the statement or answers the question.

- 1. List all the whole numbers between 63 and 101 that are perfect squares.
 - a. 64, 81, 96

c. 64, 81, 100

b. 64,81

- d. 64, 72, 81, 100
- 2. Which decimal has a square root between 14 and 15?
 - i) 240.3
 - ii) 169
 - iii) 14.5
 - iv) 204.5
 - a. ii
- b. iii
- c.

d. iv

- 3. Which fraction has a square root between 3 and 4?
 - i) $\frac{52}{3}$
 - ii) $\frac{61}{3}$
 - iii) $\frac{37}{4}$
 - iv) $\frac{79}{4}$
 - a. iv
- b. ii
- c. iii
- d. i
- 4. This object is made from 7 centimetre cubes. Determine its surface area.

- a. 20 cm²
- b. 28 cm²
- c. 42 cm²
- d. 26 cm²
- 5. This object is made from 7 centimetre cubes. Determine its surface area.

- a. 30 cm²
- b. 42 cm²
- c. 26 cm²
- d. 22 cm²

6. This object is made from 7 centimetre cubes. Determine its surface area.

- a. 29 cm²
- b. 28 cm²
- c. 24 cm²
- d. 26 cm²
- 7. This object is made from 9 centimetre cubes. Determine its surface area.

- a. 30 cm²
- b. 28 cm²
- c. 34 cm²
- d. 54 cm²
- 8. This object is made from 14 centimetre cubes. Determine its surface area.

- a. 34 cm^2
- b. 42 cm²
- c. 40 cm²
- d. 70 cm²
- 9. Here are the 6 views of an object made using centimetre cubes. Determine its surface area.

- a. 14 cm²
- b. 12 cm²
- c. 13 cm²
- d. 24 cm²

_ 10. This object is made from 3 identical right rectangular prisms.

Each prism is 55 cm long and has square ends of side length 25 cm.

What is the surface area of the object?

- a. 20 250 cm²
- b. 12 875 cm²
- c. 12 000 cm²
- d. 14 750 cm²
- 11. This object is composed of a rectangular prism on top of a cylinder.

 The rectangular prism has height 8 cm and square ends of side length 4 cm.

 The cylinder has diameter 16 cm and height 6 cm.

 Determine the surface area of the object, to the nearest square centimetre.

- a. 631 cm²
- b. 816 cm²
- c. 832 cm²
- d. 848 cm²
- 12. A 4-cm cube is attached to the top of a right triangular prism as shown.

 Determine the surface area of the composite object, to the nearest square centimetre.

- a. 298 cm²
- b. 352 cm²
- c. 336 cm²
- d. 368 cm²

- 13. Write the base of $-(-5)^3$.
 - a. -5
- b. 5
- c. -5×3
- d. 3

___ 14. Which answer is negative?

- i) (-6)⁶
- ii) -(6)⁶
- iii) -(-6)⁶
- a. i and ii
- b. ii and iii
- c. i only
- d. i and iii

_ 15. Write one hundred million as a power of 10.

- a. 10¹²
- b. 108
- c. 10¹¹
- d. 107

___ 16. Evaluate: -8⁰

- a. 8
- b. 0
- c. 1
- d. -

17. Evaluate: (-13)⁰

a. 0

- b. 1
- c. -13
- d. -1

18. Write $(5 \times 10^4) + (8 \times 10^1) + (9 \times 10^2) + (6 \times 10^0)$ in standard form.

- a. 50 980
- b. 50 986
- c. 50 981
- d. 5986

_ 19. Evaluate: $(3+4)^2 - (2-4)^3$

- a. -3
- b. 57
- c. 20
- d. 41

20. Evaluate: $10^2 \times 10^5 + 10^5$

- a. 10 100 000
- b. 1 000 000 000 000

- c. 120
- d. 10 000 100 000

____ 21. Write $-(7^2)^3$ as a power.

- a. 7
- b. -7^5
- c. -7^6
- d. 76

22. Identify the greatest rational number.

$$-\frac{9}{14}, \frac{5}{7}, -\frac{3}{4}, \frac{5}{8}$$

a. $\frac{5}{7}$

b. $\frac{5}{8}$

- c. $-\frac{9}{14}$
- d. $-\frac{3}{4}$

23. Order the numbers from least to greatest.

$$-0.4, -0.\overline{4}, -0.44$$

a. $-0.44, -0.\overline{4}, -0.4$

c. $-0.\overline{4}$, -0.44, -0.4

b. -0.4, -0.4, -0.44

d. -0.4, -44, -0. 4

24. Which of these numbers are between -2.4 and -3.9?

a. -4.05 and -3.95

c. -3.95 and -3.35

b. -2.95 and -3.95

d. -2.95 and -3.35

- ___ 25. A student first borrowed \$40.25, then borrowed another \$15.75 from his father. He then paid back \$20.75. How much does he still owe his father?
 - a. \$3.75
- b. \$45.25
- c. \$24.50
- d. \$35.25

- ____ 26. Which expression has the least sum?
 - i) 9.43 + 6.05
 - ii) -9.43 + 6.05
 - iii) 9.43 + (-6.05)
 - iv) -9.43 + (-6.05)
 - a. ii
- b.

- c. iii
- d. iv

27. Determine this difference.

$$3.7 - (-5.9)$$

- a. 9.6
- b. -21.8
- c. 8.6
- d. -2.2

28. Determine this difference.

$$-\frac{5}{2}-\left(-\frac{9}{5}\right)$$

- a. $-\frac{43}{10}$
- b. $-\frac{7}{10}$
- c. $\frac{7}{10}$
- d. $\frac{43}{10}$

- __ 29. Which products are less than 0?
 - i) $(-0.6) \times (1.1)$
 - ii) $(-2.3) \times (-1.8)$
 - iii) $(-1.2) \times (-0.7)$
 - iv) $(1.5) \times (-1.8)$
 - a. ii
- b. i, iii, and iv
- c. i and iv
- d. ii and iii

____ 30. Which products are less than 0?

i)
$$\left(\frac{-4}{5}\right) \times \left(\frac{6}{7}\right)$$

ii)
$$\left(\frac{4}{5}\right) \times \left(\frac{6}{-7}\right)$$

iii)
$$\left(\frac{-4}{5}\right) \times \left(\frac{6}{-7}\right)$$

iv)
$$\left(-\frac{4}{5}\right) \times \left(\frac{6}{7}\right)$$

- a. All of these
- b. i, ii, and iv
- c. i and iii
- d. ii and iii

____ 31. Determine this product.

$$\left(-4\frac{1}{3}\right)\left(1\frac{4}{5}\right)$$

- a. $7\frac{4}{5}$
- b. $2\frac{8}{15}$
- c. $-2\frac{8}{15}$
- d. $-7\frac{4}{5}$

32. Determine this quotient.

$$(-2.8) \div 4$$
 a. -0.7

33. Determine this quotient.

$$\left(-\frac{5}{2}\right) \div \left(\frac{2}{7}\right)$$

a.
$$-\frac{7}{5}$$

b.
$$-\frac{4}{35}$$

c.
$$-\frac{35}{4}$$

d.
$$-\frac{5}{7}$$

34. Determine this quotient.

$$\frac{3}{14} \div \left(-\frac{15}{4}\right)$$

a.
$$-\frac{2}{35}$$

b.
$$-\frac{5}{56}$$

c.
$$-\frac{45}{56}$$

d.
$$-\frac{35}{2}$$

35. Determine this quotient.

$$1\frac{1}{2} \div \left(-2\frac{3}{5}\right)$$

a.
$$-1\frac{11}{15}$$
 b. $-\frac{15}{26}$

b.
$$-\frac{15}{26}$$

c.
$$-\frac{10}{39}$$

d.
$$-3\frac{9}{10}$$

36. Which quotients are less than -1?

i)
$$\left(-\frac{1}{6}\right) \div \frac{1}{5}$$

ii)
$$\left(-\frac{1}{5}\right) \div \frac{1}{6}$$

iii)
$$\frac{1}{6} \div \left(-\frac{1}{5}\right)$$

iv)
$$\frac{1}{5} \div \left(-\frac{1}{6}\right)$$

iii and iv

b. i and iii

i and ii

d. ii and iv

37. The pattern in this table continues. Determine the expression that relates the number of triangles to the figure number.

Figure, f	1	2	3	4	5
Number of Triangles, t	2	4	6	8	10

2fa.

b. 2 + t

2t

d. 2+f

___ 38. Which tables of values represent a linear relation?

i)

	x	1	2	3	4	5
Γ	y	4	7	12	19	28

ii)

x	0	1	2	3	4
у	0	5	10	15	20

iii)

11)						
	x	1	2	3	4	5
	у	5	9	13	17	21

iv)

x	0	1	2	3	4
v	12	11	10	9	8

- a. ii, iii, and iv
- b. ii and iii
- c. All of these
- d. i and iv

____ 39. This graph represents a linear relation. Determine the value of y when x = 9.

- a. 15
- b. 6
- c 9
- d. 0
- ___ 40. Which of the following expressions is a binomial with degree 2?
 - i) $x^2 6x + 5$
 - ii) $3x^2$
 - iii) $5x^2 2x$
 - iv) $\frac{1}{x^2} 7$
 - a. i

- b. ii
- c. iv
- d. iii

41. Which of the following expressions are monomials with degree 2?

- i) $2x^2 + 2x$
- ii) $2x^2$
- iii) x^2
- iv) 2x
- a. ii and iii
- b. ii and iv
- c. iii and iv d. i and ii

42. Name the coefficients of the variable in the polynomial $-4x^2 + 10x - 12$.

- b. -4, 10
- c. -4, -12

43. Simplify: $10x^2 - 8 + 3x + 5 - 6x^2 - 6x$

a. $4x^2 - 3x + 3$

c. $4x^2 + 3x + 3$

b. $4x^2 - 3x - 3$

d. $4x^4 - 3x^2 - 3$

44. Add: (-3x-7)+(5-2x)

- a. -5x 2
- b. -5x + 12
- c. -5x + 2
- d. 5x + 2

45. Add: $(3x^2 - 5) + (6x^2 - 10x - 6)$

a. $9x^2 - 10x + 11$

c. $9x^2 - 15x - 6$

b. $9x^2 - 10x - 11$

d. $18x^2 - 10x - 30$

46. Subtract: (6x-3)-(11x-8)

- a. -5x + 11 b. -5x + 5
- c. -5x 5
- d. -5x 11

47. Subtract: (2p-3)-(3-2p)

- a. -4p+6 b. 0
- c. 4p-6
- d. 4p + 6

48. Subtract: $(5r^2-4)-(8r^2+7r+8)$

- a. $3r^2 7r 12$
- b. $-3r^2 7r 12$

- c. $-3r^2 + 7r + 4$
- d. $3r^2 + 7r + 4$

49. Subtract: $(3-2c-6c^2)-(5c-3)$

- a. $-6c^2 7c$
- b. $6c^2 + 7c 6$

- c. $-6c^2 + 7c 6$
- d. $-6c^2 7c + 6$

50. The perimeter of this isosceles triangle is represented by the polynomial 15p + 12. Write a simplified polynomial for the length of the unknown side.

- 25p + 18
- b. 5p + 6
- c. 10p + 9
- d. 5p + 3
- 51. A large black square represents a $-x^2$ tile, a black rectangle represents an -x-tile, and a small white square represents a 1-tile.

What is the division sentence modelled by this set of algebra tiles?

- a. $\frac{-32x^2 32x + 16}{2}$ b. $\frac{-2x^2 2x + 6}{2}$ c. $\frac{-32x^2 + 32x + 48}{16}$ d. $\frac{2x^2 2x + 6}{2}$

52. Determine the area of this rectangle.

- a. $-11x^2 4x + 2$
- b. $24x^2 4x + 2$

- c. $-11x^2 12x 6$
- d. $-24x^2 32x + 16$

53. A large white square represents an x^2 -tile, a white rectangle represents an x-tile, and a small white square represents a 1-tile.

Which of these multiplication sentences is modelled by the algebra tiles below?

- i) 2x(2x+5)
- ii) $2(2x^2 + 5)$
- iii) x(2x + 5)
- iv) $2x(4x^2 + 10x)$

- iii a.
- b. ii
- c. i

- 54. Solve: 4.3 = -2x 2.7
 - a. 3.5
- b. -0.8
- -3.5
- d. 0.8

- 55. Solve: 4x + 2.8 = 7.2
 - a. 0.4
- b. -1
- 6.5
- 1.1

- 56. Solve: $8 = 5 + \frac{x}{3}$
 - a. -7
- b. 19

- d. 9
- 57. Write an equation for this statement: A number divided by 3, plus 8, is 11.

a.
$$\frac{x}{3} = 8 + 11$$

- a. $\frac{x}{3} = 8 + 11$ b. $\frac{x}{3} + 8 = 11$ c. $\frac{3}{x} + 8 = 11$ d. $\frac{x+8}{3} = 11$
- 58. Solve: 8y = 2y 12

a.
$$y = -2$$

b.
$$y = -18$$

a.
$$y = -2$$
 b. $y = -18$ c. $y = \frac{-10}{8}$ d. $y = 2$

59. Solve: $\frac{x}{4} + \frac{11}{2} = \frac{7}{4}$

a.
$$x = -4$$

b.
$$x = -60$$

c.
$$x = -8$$

c.
$$x = -8$$
 d. $x = -15$

60. Which of these graphs represent the solution of the inequality $q-2 \le 0$?

i)

ii)

iii)

iv)

- a. Graph ii
- b. Graph i
- Graph iii
- d. Graph iv

61. Which of these numbers is a solution of the inequality j + 1.2 < 3.6?

- 2.4, 2.1, 1.4, 3.5
- a. 2.1, 1.4
- b. 1.4, 3.5
- c. 2.1, 3.5
- d. 2.4, 2.1, 1.4

62. Which of these numbers are solutions of the inequality 11 > 3 - 2w?

- -4, -3, -5, -2a. -3, -2
- b. -4, -3, -2 c. -3, -5
- d. -4, -5

63. Solve: $7 + \frac{3}{4}x < 10$

- a. x > -4
- b. x < -4 c. x < 4
- d. x > 4

64. O is the centre of this circle and point Q is a point of tangency. Determine the value of x° .

- 139°
- 49°
- c. 41°
- d. 90°

65. O is the centre of this circle and point G is a point of tangency.

Determine the value of a. If necessary, give your answer to the nearest tenth.

- a. 11.3
- b. 22.5
- c. 4.6
- d. 14.9
- 66. O is the centre of this circle and point Q is a point of tangency. Determine the value of c. If necessary, give your answer to the nearest tenth.

- a. 48
- b. 27.1
- c. 11
- d. 5.5

67. O is the centre of the circle. Determine the value of v° .

- a. 19°
- b. 71°
- c. 52°
- d. 38°

__ 68. O is the centre of the circle.

Determine the value of s to the nearest tenth, if necessary.

- a. 3
- b. 7.1
- c. 12.2
- d. 51

___ 69. O is the centre of this circle. Determine the value of c° .

- a. 90°
- b. 44°

- c. 180°
- d. 88°

____ 70. O is the centre of this circle. Determine the value of v° .

- a. 118°
- b. 59°

- c. 90°
- d. 31°

Short Answer

71. Five centimetres cubes are labelled 1 to 5 as shown.

Determine the surface area of the object formed by placing Cube 5 on top of each indicated cube.

- a) Cube 1
- b) Cube 3
- c) Cube 4
- 72. Determine the surface area of this composite object, to the nearest square centimetre.

The cylinder has diameter 3 cm and height 4 cm.

The prism has length 10 cm, width 9 cm, and height 9 cm.

73. Write these powers in order from least to greatest.

$$2^5, 4^3, 3^4, 5^2$$

74. Insert brackets to make each statement true.

a)
$$3^2 + 4 \times 5 - 2^2 = 13$$

b)
$$3^2 + 4 \times 5 - 2^2 = 61$$

- 75. Evaluate: $5^2 + 6^3 + 5^2 + 6^3 + 5^2 + 6^3$
- 76. Simplify, then evaluate.

$$\left[(-2)^4 \times (-2)^3 \right] - \left[(-3)^4 \div (-3)^3 \right]$$

- 77. Insert <, >, or = to make each expression true.
 - a) 2065 mm \[\square 20.65 cm
 - b) 3334 m 🗆 33.34 km
 - c) 1447 cm 14.47 m

- 78. Estimate whether this sum is greater than or less than 0. 11.32 + (-11.21)
- 79. Determine this difference.

$$-\frac{10}{3} - \frac{13}{9}$$

80. Evaluate this expression.

$$-6.7 - 16.59 + 12.26$$

81. Determine this product.

$$\left(3\frac{1}{2}\right)\left(-3\frac{2}{3}\right)$$

82. Which quotients are less than 0?

i)
$$-2\frac{2}{5} \div 1\frac{7}{8}$$

ii)
$$2\frac{2}{5} \div (-\frac{2}{9})$$

iii)
$$-1\frac{7}{8} \div (-\frac{2}{9})$$

iv)
$$\frac{2}{9} \div (-2\frac{2}{5})$$

- 83. a) Write a division expression with the same answer as $\frac{3}{4} \div \left(-\frac{2}{3}\right)$.
 - b) Write two multiplication expressions with the same answer as $\frac{3}{4} \div \left(-\frac{2}{3}\right)$.
- 84. Evaluate.

$$\frac{0.6 \times 2.7}{0.162 \div 0.3}$$

- 85. The first term value, f, in a pattern is 25. As the term number increases by 1, the term value increases by 4.
 - a) Create a table of values for the pattern.
 - b) Write an expression for the term value in terms of the term number, n.

86. Match each equation with a graph on the grid below.

i)
$$y = -10$$

ii)
$$x = 2$$

iii)
$$x - 2y = 0$$

- 87. This graph represents a linear relation.
 - a) Estimate the value of y when x = -3.
 - b) Estimate the value of x when y = -1.5.

88. This graph shows how a speed in feet per second relates to a speed in metres per second.

- a) Estimate the speed in feet per second of an object moving at 6 m/s.
- b) Estimate the speed in metres per second of an object moving at 26 ft./s.

89. Which of the following expressions are polynomials?

- i) $x^3 3x + 5$ ii) $\frac{5}{x^2} + \frac{1}{x} + 7$ iii) $\sqrt{2x^2 + 6x}$ iv) 7 x

90. A large white square represents an x^2 -tile, a large black square represents a $-x^2$ -tile, a white rectangle represents an x-tile, a black rectangle represents a -x-tile, a small white square represents a 1-tile, and a small black square represents a -1-tile.

Match each polynomial with its corresponding algebra tile model.

- i) $3 2t + 4t^2$
- ii) $3a^2 6$
- iii) $4s 7 2s^2$
- iv) $5m^2$
- v) -3p + 8
- vi) $-4c^2 + 6c 2$

Model A

Model B

Model C

Model D

Model E

Model F

91. Group like terms.

$$5x^2 + 5 - 2x + 3 + 3x^2 - 3x$$

- 92. Simplify: 5x-4+5-2x+4x-3+3x-5
- 93. Simplify: $-4x^2 + 5 6x + 4 3x^2 + 4x$

94. A large white square represents an x^2 -tile, a large black square represents a $-x^2$ -tile, a white rectangle represents an x-tile, and a black rectangle represents a -x-tile.

Write the polynomial sum modelled by this set of tiles.

95. The area of this rectangle is $-28x^2 + 8x$. Write the division sentence modelled by this rectangle.

96. Solve:
$$\frac{6x}{4} = -12$$

- 97. Forty-four divided by a number is -11. Write, then solve an equation to determine the number.
- 98. Which operation will you perform on each side of the inequality to isolate the variable? -14+z>19
- 99. Solve: 8 + 4f > 5f + 3
- 100. Gary has \$227.36 in his bank account. He must maintain a minimum balance of \$550 in his account to avoid paying a monthly service fee.

How much money can Gary deposit into his account to avoid paying this fee?

- a) Choose a variable, then write an inequality that can be used to solve this problem.
- b) Solve the problem.
- 101. Solve $5 + \frac{2}{3}w > 4$. Graph the solution.

102. Solve: 2.4 + 3.7x < 4.2 + 2.5x

103. O is the centre of this circle.
Which line segment is a diameter?

104. Point O is the centre of this circle. Determine the values of x° and y° .

105. Point O is the centre of this circle. Determine the values of c° and d° .

Droblem

106. This large square is made of 9 unit squares.

The numbers of squares of different sizes in the large square are:

1-by-1 square: 9 2-by-2 square: 4 3-by-3 square: 1

The total number of squares in the large square is: $9 + 4 + 1 = 3^2 + 2^2 + 1^2 = 14$

Write and evaluate an expression for the number of squares.

- a) a 4-unit-by-4-unit square
- b) a 5-unit-by-5-unit square

c) a 10-unit-by-10-unit square

- 107. Write each number as a power in as many ways as possible.
 - a) 1024
 - b) 729
- 108. Write each whole number from 32 to 39 as a sum of two or more squares.

Number	Sum of Squares
32	
33	
34	
35	
36	
37	
38	
39	

109. Write the expression $\frac{8^3}{4^4}$ so that the powers have the same base.

Simplify, then evaluate.

- 110. A resort rents out mobile phones by the day. This graph shows how the cost to rent a phone relates to the number of days the phone is rented.
 - a) Estimate the cost to rent a phone for:
 - i) 1 day
 - ii) 13 days
 - b) A customer paid \$35.00 to rent a phone. For how many days did the customer rent the phone?

- 111. Solve: 2(p+5) + 3(p-2) = 2(p+6)Show your work.
- 112. Point O is the centre of the circle. Determine the values of x° , y° , and z° .

