
Extra Practice 5

Lesson 5.5: Multiplying and Dividing a Polynomial by a Constant			
1.	Multiply. Sketch the tiles for one a) $2(3b)$ d) $-2(2x^2)$	product. b) $-2(6h)$ e) $-2(-y^2)$	c) $4(2b^2)$ f) $-3(-2f)$
2.	Divide. Sketch the tiles for one di a) $12d \div 4$ d) $12y^2 \div 4$	vision statement. b) $-20d \div 5$ e) $-14x^2 \div 2$	c) $8d \div -4$ f) $-10q \div -5$
3.	Determine each product. a) $4(3a + 2)$ c) $2(4c^2 - 2c + 3)$ e) $-3(-5m^2 + 6m + 7)$	b) $(d^2 + 2d)(-3)$ d) $(-2n^2 + n - 1)(6)$	
4.	Here is a student's solution for a multiplication question. $(-5k^2 - k - 3)(-2)$ $= -2(5k^2) - 2(k) - 2(3)$ $= -10k^2 - 2k - 6$ a) Explain why the student's solution is incorrect. b) What is the correct answer? Show your work.		
5.	Determine each quotient. a) $(16v + 16) \div (8)$ c) $(20 - 8n) \div (-4)$ e) $(7 - 7y + 14y^2) \div (-7)$	b) $(25k^2 - 15k) \div (5)$ d) $(18x^2 - 6x + 6) \div (6)$	
6.	Here is a student's solution for a division question. $(-12r^{2} - 8r - 16) \div (-4)$ $= \frac{-12r^{2}}{4} + \frac{-8r}{4} + \frac{-16}{4}$ $= -3r^{2} - 2r + 4$ a) Explain why the student's solution is incorrect. b) What is the correct answer? Show your work.		

- **d)** $-12n^2 + 6n 6$ **e)** $15m^2 - 18m - 21$
- 4. a) The negative signs were omitted on the first polynomial when (-2) was distributed; $(-5k^2)(-2) + (-k)(-2) + (-3)(-2) =$ $10k^2 + 2k + 6$
- **5.** a) 2v + 2c) -5 + 2ne) $-1 + y - 2y^2$ **b)** $5k^2 - 3k$ d) $3x^2 - x + 1$
- **6.** The divisor is -4, when writing the quotient expression as a sum of three fractions, each denominator should be -4, rather than 4; $3r^2 + 2r + 4$