Balancing scales

Example 1

Both sides are equal, so if the right side is equal to 6, then the left must also equal 6.

$$A + 3 = 6$$

Take away 3 from both sides, that leaves A = 3 also.

Example 2

Both sides are equal, so if the right side is equal to 10, then the left must also equal 10.

$$B + B = 10$$

Since the two tins have the same letter they weigh the same. So one tin must equal half of 10 (B = 5).

This can also be written as:

$$2B = 10$$

$$B = 10 \div 2$$

$$B = 5$$

Practice exercise

(a)

Weight of one tin =_____kg

(b)

Weight of one box = $_$ __ kg

(c)

Weight of one $tin = \underline{\hspace{1cm}} kg$

(d)

Weight of one box = $\underline{}$ kg