Combining Like Terms with Algebra Tiles

Key	Rule to Remember	
$\square=1$	$=x \square=x^{2}$	Like terms in an equation have the same variable and exponent. They do not need to have the same coefficient.
$\square=-1$	$=-x \quad=-x^{2}$	

Algebra tiles can be used to model algebraic expressions and simplify expressions by combining like terms. Carefully look at the example below. Each term in Example 1 is positive.

Example 1: Simplify $4 x^{2}+2 x+2+2 x^{2}+3 x+x^{2}+1$ using algebra tiles.

First represent each term with algebra tiles.

Then group the similar tiles together and state the result.

The resulting expression is $7 x^{2}+5 x+3$.

1. Use algebra tiles to model the expression and combine like terms.
a) $4 x+1+x+5$
b) $2+3 x+5 x+4 x+1$
c) $\quad 2+x^{2}+3 x+2 x^{2}+2$
d) $2 x+3 x^{2}+3 x+2 x^{2}+2+x^{2}+x^{2}+1$
e) $x^{2}+2 x+x^{2}+1+x^{2}+x+1+x^{2}+2$
f) $\quad x^{2}+2 x+x+2 x^{2}+x^{2}+3+3 x+1+x^{2}+3 x^{2}$

Algebra tiles can also be used when an expression contains negative terms. Black tiles represent the negative terms. Negative terms are terms that are being subtracted.

Example 2: Simplify $2 x^{2}-2 x+3+x-x^{2}$ using algebra tiles.

First represent each term with algebra tiles.

Group the similar sized tiles together.

Remove pairs that equal zero.

Show the result.

The resulting expression is $x^{2}-x+3$.
2. Use algebra tiles to model the expression and combine like terms.
a) $3 x-2-2 x+4$
b) $x+3-2 x-2-x$
c) $\quad 1-x^{2}+2 x+2 x^{2}-2$
d) $\quad x^{2}-2 x-2 x^{2}+x^{2}-3+3 x+1$

