Properties of Inequality Handout

Inequality Symbols:

- > Greater Than
- ≥ Greater Than or Equal To

(The line underneath the Greater Than sign indicates also Equal To.)

- < Less Than
- ≤ Less Than or Equal To

(The line underneath the Less Than sign indicates also Equal To.)

Graphing Inequality Symbols:

○ Greater Than

(The open circle indicates that this is **NOT EQUAL TO** the number that is graphed.)

Greater Than or Equal To

(The closed circle indicates that this is **EQUAL TO** the number that is graphed.)

← Less Than

(The open circle indicates that this is **NOT EQUAL TO** the number that is graphed.)

Less Than or Equal To

(The closed circle indicates that this is **EQUAL TO** the number that is graphed.)

Properties of Inequality Handout

Multiplication Property:

If x < y, and z > 0 then x * z < y * z

Example:

Suppose
$$3 < 6$$
, and $z = 10$ then $3 * 10 < 6 * 10$ or $30 < 60$

If x > y, and z > 0, then x * z > y * z

Example:

Suppose
$$20 > 10$$
, and $z = 5$
then $20 * 5 > 10 * 5$ or $100 > 50$

Whenever you multiply by a negative number, you must reverse the inequality sign.

If
$$x < y$$
, and $z < 0$ then $x * z > y * z$

Example:

Suppose
$$2 < 4$$
, and $z = -2$ then $2 * -2 > 4 * -2$ or $-4 > -8$

If
$$x > y$$
, and $z < 0$, then $x * z < y * z$

Example:

Suppose
$$6 > 3$$
, and $z = -8$ then $6 * -8 < 3 * -8$ or $-48 < -24$

Properties of Inequality Handout

Division Property:

If
$$x < y$$
, and $z > 0$ then $x \div z < y \div z$

Example:

Suppose
$$15 < 20$$
, and $z = 5$ then $15 \div 5 < 20 \div 5$ or $3 < 4$

If
$$x > y$$
, and $z > 0$, then $x \div z > y \div z$

Example:

Suppose
$$20 > 10$$
, and $z = 5$
then $20 \div 5 > 10 \div 5$ or $4 > 2$

Whenever you divide by a negative number, you must reverse the inequality sign.

If
$$x < y$$
, and $z < 0$ then $x \div z > y \div z$

Example:

Suppose
$$12 < 24$$
, and $z = -2$ then $12 \div -2 > 24 \div -2$ or $-6 > -12$

If
$$x > y$$
, and $z < 0$, then $x \div z < y \div z$

Example:

Suppose 16 > 12 , and
$$z = -4$$
 then $16 \div -4 < 12 \div -4$ or $-4 < -3$

