Squares, Square Roots and Perfect Squares

Term	Definition
Square	The product of a number and itself (the product of 6 and 6 is 36) Ex: $6 \times 6 = 6^2 = 36$
Square Root	One of two EQUAL factors of a number Ex: The square root of 9 is 3 ($\sqrt{9}$ = 3) because 3 x 3 = 9
Radical Sign	$\sqrt{}$: the symbol used to indicate the square root of a number
Perfect Square	A number whose square root is a whole number Ex: 16 is a perfect square because $\sqrt{16} = 4$ 4 is a whole number (not a decimal/fraction)!

Perfect Squares

Are the shaded portions squares? Yes Why? All Sides are equal

Examples of Perfect Squares:

- 1) 4 is a perfect square because $2 \times 2 = 4$
- 2) 9 is a perfect square because $3 \times 3 = 9$
- 3) 16 is a perfect square because $\underline{4} \times \underline{4} = 16$

Using this grid, color a perfect square larger than 16.

Why is your drawing a perfect square? Why? Because all sides are qunits, and the "area", Represented by the smaller squares inside, is

Perfect Squares:

$$1^2 = |x| = |6^2 = 6 \times 6 = 36$$

$$2^2 = 2 \times 2 = 2$$
 $7^2 = 7 \times 7 = 49$

$$3^2 = 3 \times 3 = 9$$
 $8^2 = 8 \times 8 = 64$

$$18^2 = 18 \times 18 = 324$$

$$4^2 = 4 \times 4 = 16$$
 $9^2 = 9 \times 9 = 81$

$$14^2 = 14 \times 14 = 196$$
 $19^2 = 19 \times 19 = 361$

$$5^2 = 5 \times 5 = 25$$
 $10^2 = 10 \times 10 = 100$

$$15^2 = 15 \times 15 = 225$$

$$20^2 = 20 \times 20 = 400$$