Dividing

- We already know how to divide two positive integers. For example, (+12) ÷ (+4) = (+3), since division is the opposite of multiplication and (+3) × (+4) = (+12).
- In a similar way, $(-12) \div (+4) = (-3)$ since $(+4) \times (-3) = -12$.

We model this calculation by thinking of dividing 12 dark counters into four equal groups and noticing that there are three dark counters (–3) in each group.

• $(-12) \div (-4) = (+3)$ since $(-4) \times (+3) = (-12)$.

We model this calculation by thinking: How many groups of four dark counters are there in 12 dark counters? Since the answer is three groups, $(-12) \div (-4) = +3$.

• It is difficult to model (+12) \div (-4), but it does make sense that the quotient is -3 since (-4) \times (+3) = -12. See Question 11 for another way to understand why (+a) \div (-b) = -(a \div b).

Notice that (12) \div (3) = (-12) \div (-3) and (-12) \div (+3) = (+12) \div (-3).

7. Model and solve at least three of these.

a)
$$(-49) \div 7$$

b)
$$49 \div (-7)$$

c)
$$36 \div (6)$$

- 8. Why does it make sense that 30 ÷ (-6) is negative?
- **9.** Two other integers have the same quotient as $40 \div (-5)$. List three possible pairs of integers.

10. You divide two integers and the quotient is -12. List four possible pairs of integers.

11.a) Complete the pattern. What do you notice?

$$(-12) \div (-4) =$$

$$(-8) \div (-4) =$$

$$(-4) \div (-4) =$$

$$0 \div (-4) =$$

$$4 \div (-4) =$$

b) What pattern could you create to show why $(+9) \div (-3) = -3$?

- 12. Complete the statement to make it true.
 - a) If you divide a positive integer by a negative one, the result _____
 - b) If you divide a positive integer by a positive one, the result _____
 - c) If you divide a negative integer by a negative one, the result _____
 - d) If you divide a negative integer by a positive one, the result _____.