Grade 7 Math
 Unit 1 Notes: Patterns \& Relations

Section 1.4: Relationships in Patterns

A number pattern may be described by using the term number...

Term Number	1	2	3	4	5	6
Term	6	12	18	24	30	36

In this case each term is 6 times the term number.

We can let " n " represent any term number.

Term Number	1	2	3	4	5	6	\ldots	n
Term	$6 \times 1=6$	$6 \times 2=$ 12	$6 \times 3=$ 18	$6 \times 4=$ 24	$6 \times 5=30$	$6 \times 6=36$	\ldots	$6 \times n=$ $6 n$

Then the term is represented by 6 xn , or $\mathbf{6 n}$ (As seen in the table above)

If we compare or "relate" a variable (" n ") to an expression that contains the variable (6n), you have a relation.

If we wish to determine the 15 th term of this relation we substitute $\mathrm{n}=15$ in the expression 6 n.
$6 n=6 \times 15=90$
Therefore, the 15 th term of this relation is 90 . The major advantage of this is we do not have to find the previous 14 numbers in the table.

