Lesson 2.5: Exponent Laws II

- **1.** Write each expression as a product of powers or a quotient of powers.
 - a) $(3 \times 2)^4$ b) $[(-4) \times 3]^2$ c) $[(-2) \times (-4)]^3$ e) $(10 \div 5)^3$ f) $[(-12) \div (-6)]^2$ g) $\left(\frac{8}{4}\right)^4$ h) $\left(\frac{1}{10}\right)^6$
- 2. Write as a power.
 - **a)** $(3^4)^2$ **b)** $(5^0)^3$ **c)** $-(7^2)^2$ **d)** $[(-3)^3]^2$
- 3. Why is the value of $[(-3)^3]^2$ positive and the value of $[(-3)^3]^3$ negative?
- 4. Simplify, then evaluate. a) $(2^3 \times 2^1)^2$ b) $(5^4 \div 5^2)^2$ c) $[(-3)^0 \times (-3)^3]^2$ d) $(10^2)^4 \div (10^3)^2$
- 5. Simplify, then evaluate each expression.
 - Simplify, then evaluate each (**a**) $(3^2 \times 4^3)^2 - (4^4 \div 4^2)^2$ **b**) $(2^3 \div 2^2)^3 + (7^4 \times 7^3)^0$ **c**) $[(-1)^3]^4 - [(-1)^4 \div (-1)^3]^2$ **d**) $(4^2 \times 4^3)^0 - (3^2)^2$ **e**) $(5^2 \times 5^0)^3 + (2^5 \div 2^3)^3$ **f**) $(10^6 \div 10^3)^2 + (2^3 \div 2^1)^4$
- 6. Find and correct any errors in each solution.

a)
$$(4^3 \times 2^2)^2 = (8^5)^2$$

= 8^{10}
= 1 073 741 824

b)
$$[(-10)^3]^4 = (-10)^7$$

= -10 000 000

c)
$$(2^2 + 2^3)^2 = (2^5)^2$$

= 2^{10}

ANSWER KEY for Lesson 2.5

- **b)** $(-4)^2 \times 3^2$ **d)** $7^0 \times 11^0$ **1.** a) $3^4 \times 2^4$ **c)** $(-2)^3 \times (-4)^3$ **e)** $10^3 \div 5^3$ **f**) $(-12)^2 \div (-6)^2$ **g)** $\frac{8^4}{4^4}$ **h)** $\frac{1^6}{10^6}$
- **2.** a) 3⁸ **b)** 5⁰ **c)** -7⁴ **d**) $(-3)^6$
- **3.** $[(-3)^3]^2$ is positive because it is the square of a power, and the square of any number is positive. $[(-3)^3]^3$ is negative because it simplifies to $(-3)^9$, and the product of an odd number of negative factors is negative.
- 4. a) $(2^3 \times 2^1)^2 = (2^4)^2 = 2^8 = 256$ b) $(5^4 \div 5^2)^2 = (5^2)^2 = 5^4 = 625$ c) $[(-3)^0 \times (-3)^3]^2 = [(-3)^3]^2 = (-3)^6 = 729$ d) $(10^2)^4 \div (10^3)^2 = 10^8 \div 10^6 = 10^2 = 100$
- 5. a) $(3^2 \times 4^3)^2 (4^4 \div 4^2)^2 = (9 \times 64)^2 (4^2)^2$ = $576^2 4^4 = 331776 256 = 331520$
 - **b)** $(2^3 \div 2^2)^3 + (7^4 \times 7^3)^0 = 2^3 + 1 = 8 + 1 = 9$ **c)** $[(-1)^3]^4 [(-1)^4 \div (-1)^3]^2 = (-1)^{12} (-1)^2$

 - (1) $(1 + 1)^{-1} = 0$ (a) $(4^2 \times 4^3)^0 (3^2)^2 = 1 3^4 = 1 81 = -80$ (b) $(5^2 \times 5^0)^3 + (2^5 \div 2^3)^3 = 5^6 + 2^6 = 15\ 625 + 64 = 15\ 689$ (1) $(10^6 \div 10^3)^2 + (2^3 \div 2^1)^4 = (10^3)^2 + (2^2)^4 = 10^6 + 2^8 = 1\ 000\ 000 + 256 = 1\ 000\ 256$
- **6. a)** $(4^3 \times 2^2)^2 = 4^6 \times 2^4 = 4096 \times 16 = 65536$ **b)** $[(-10)^3]^4 = (-10)^{12} = 100000000000$ **c)** $(2^2 + 2^3)^2 = (4 + 8)^2 = 12^2 = 144$