Lesson 2.5: Exponent Laws II

1. Write each expression as a product of powers or a quotient of powers.
a) $(3 \times 2)^{4}$
b) $[(-4) \times 3]^{2}$
c) $[(-2) \times(-4)]^{3}$
d) $(7 \times 11)^{0}$
e) $(10 \div 5)^{3}$
f) $[(-12) \div(-6)]^{2}$
g) $\left(\frac{8}{4}\right)^{4}$
h) $\left(\frac{1}{10}\right)^{6}$
2. Write as a power.
a) $\left(3^{4}\right)^{2}$
b) $\left(5^{0}\right)^{3}$
c) $-\left(7^{2}\right)^{2}$
d) $\left[(-3)^{3}\right]^{2}$
3. Why is the value of $\left[(-3)^{3}\right]^{2}$ positive and the value of $\left[(-3)^{3}\right]^{3}$ negative?
4. Simplify, then evaluate.
a) $\left(2^{3} \times 2^{1}\right)^{2}$
b) $\left(5^{4} \div 5^{2}\right)^{2}$
c) $\left[(-3)^{0} \times(-3)^{3}\right]^{2}$
d) $\left(10^{2}\right)^{4} \div\left(10^{3}\right)^{2}$
5. Simplify, then evaluate each expression.
a) $\left(3^{2} \times 4^{3}\right)^{2}-\left(4^{4} \div 4^{2}\right)^{2}$
b) $\left(2^{3} \div 2^{2}\right)^{3}+\left(7^{4} \times 7^{3}\right)^{0}$
c) $\left[(-1)^{3}\right]^{4}-\left[(-1)^{4} \div(-1)^{3}\right]^{2}$
d) $\left(4^{2} \times 4^{3}\right)^{0}-\left(3^{2}\right)^{2}$
e) $\left(5^{2} \times 5^{0}\right)^{3}+\left(2^{5} \div 2^{3}\right)^{3}$
f) $\left(10^{6} \div 10^{3}\right)^{2}+\left(2^{3} \div 2^{1}\right)^{4}$
6. Find and correct any errors in each solution.
a) $\left(4^{3} \times 2^{2}\right)^{2}=\left(8^{5}\right)^{2}$

$$
\begin{aligned}
& =8^{10} \\
& =1073741824
\end{aligned}
$$

b) $\left[(-10)^{3}\right]^{4}=(-10)^{7}$

$$
=-10000000
$$

c) $\left(2^{2}+2^{3}\right)^{2}=\left(2^{5}\right)^{2}$

$$
=2^{10}
$$

ANSWER KEY for Lesson 2.5

1. a) $3^{4} \times 2^{4}$
b) $(-4)^{2} \times 3^{2}$
c) $(-2)^{3} \times(-4)^{3}$
d) $7^{0} \times 11^{0}$
e) $10^{3} \div 5^{3}$
f) $(-12)^{2} \div(-6)^{2}$
g) $\frac{8^{4}}{4^{4}}$
h) $\frac{1^{6}}{10^{6}}$
2. a) 3^{8}
b) 5^{0}
c) -7^{4}
d) $(-3)^{6}$
3. $\left[(-3)^{3}\right]^{2}$ is positive because it is the square of a power, and the square of any number is positive. [($\left.3)^{3}\right]^{3}$ is negative because it simplifies to $(-3)^{9}$, and the product of an odd number of negative factors is negative.
4. a) $\left(2^{3} \times 2^{1}\right)^{2}=\left(2^{4}\right)^{2}=2^{8}=256$
b) $\left(5^{4} \div 5^{2}\right)^{2}=\left(5^{2}\right)^{2}=5^{4}=625$
c) $\left[(-3)^{0} \times(-3)^{3}\right]^{2}=\left[(-3)^{3}\right]^{2}=(-3)^{6}=729$
d) $\left(10^{2}\right)^{4} \div\left(10^{3}\right)^{2}=10^{8} \div 10^{6}=10^{2}=100$
5. a) $\left(3^{2} \times 4^{3}\right)^{2}-\left(4^{4} \div 4^{2}\right)^{2}=(9 \times 64)^{2}-\left(4^{2}\right)^{2}$
$=576^{2}-4^{4}=331776-256=331520$
b) $\left(2^{3} \div 2^{2}\right)^{3}+\left(7^{4} \times 7^{3}\right)^{0}=2^{3}+1=8+1=9$
c) $\left[(-1)^{3}\right]^{4}-\left[(-1)^{4} \div(-1)^{3}\right]^{2}=(-1)^{12}-(-1)^{2}$
$=1-1=0$
d) $\left(4^{2} \times 4^{3}\right)^{0}-\left(3^{2}\right)^{2}=1-3^{4}=1-81=-80$
e) $\left(5^{2} \times 5^{0}\right)^{3}+\left(2^{5} \div 2^{3}\right)^{3}=5^{6}+2^{6}=15625+64=15689$
f) $\left(10^{6} \div 10^{3}\right)^{2}+\left(2^{3} \div 2^{1}\right)^{4}=\left(10^{3}\right)^{2}+\left(2^{2}\right)^{4}=10^{6}+2^{8}=1000000+256=1000256$
6. a) $\left(4^{3} \times 2^{2}\right)^{2}=4^{6} \times 2^{4}=4096 \times 16=65536$
b) $\left[(-10)^{3}\right]^{4}=(-10)^{12}=1000000000000$
c) $\left(2^{2}+2^{3}\right)^{2}=(4+8)^{2}=12^{2}=144$
