Lesson 2.3: Order of Operations with Powers

1. Evaluate.

2.

a) $5^2 + 3^2$	b)	$5^2 - 3$	c)	$5 + 3^2$	d)	$5 - 3^2$
e) (5 + 3	3) ² f)	$(5-3)^2$	g)	$5^2 + 3^2$	h)	$5^2 - 3^2$
Evaluate.						
a) $4^3 \times 2^3$	2 b)	$4^3 \div 2$	c)	4×2^3	d)	$4 \div 2^3$

- **e**) $(4 \times 2)^3$ **f**) $(4 \div 2)^3$ **g**) $4^3 \times 2^3$ **h**) $4^3 \div 2^3$
- 3. Evaluate.
 - a) $(18 \div 3^2 + 1)^4 4^2$ b) $3^3 \div 9(3^0 2^2)$ c) $(12^2 + 5^3)^0 2[(-3)^3]$ d) $(7-5)^3 \times (8+2)^4$ e) $(4^2 \times 1^5)^2$ f) $[(-3)^4 - (-2)^3]^0 \div [(-4)^3 - (-3)^2]^0$
- 4. Insert brackets to make each statement true.
 - a) $15 \div 3 + 2 \times 4^2 5 = 43$ b) $15 \div 3 + 2 \times 4^2 - 5 = 27$ c) $15 \div 3 + 2 \times 4^2 - 5 = 107$ d) $15 \div 3 + 2 \times 4^2 - 5 = 64$
- 5. The formula for the volume, V, of a cylinder with height, h, and radius, r, is $V = \pi r^2 h$. Janet made 3 L of salsa and stores it in jars with a radius of 4 cm and a height of 10 cm. She uses this expression to determine the number of jars she will need: $\frac{3000}{\pi \sqrt{2} \times 10}$ About how many jars will Janet need for the salsa?
 - About now many jars will janet need for the saisa?
- 6. Aftab, Shane, and Kyra got different answers when they evaluated this expression: $(-4)^2 - 3[(-9) \div 3]^2$ Aftab's answer was 97, Shane's answer was 43, and Kyra's answer was 19.
- a) Show the correct solution.
- b) Show and explain how the students who got the wrong answer may have evaluated.
 Where did each student go wrong?

ANSWER KEY for Lesson 2.3

- **1.** a) 28 **b)** 22 **c)** 14 **e)** 64 **f)** 4 **d)** –4 **h)** 16 **g)** 34 $\frac{1}{2}$ 2. a) 128 **b)** 32 c) 32 d) e) 512 **f)** 8 g) 512 **h)** 8 **3.** a) 65 **b)** -9 c) 55 e) 256 **d)** 80 000 **f)** 1 4. a) $15 \div (3 + 2) \times 4^2 - 5 = 43$ b) $15 \div 3 + 2 \times (4^2 - 5) = 27$ c) $(15 \div 3 + 2) \times 4^2 - 5 = 107$ d) $15 \div 3 + (2 \times 4)^2 - 5 = 64$ 5. About 6 jars 6. a) The correct solution:
- **a)** The correct solution: $(-4)^2 - 3[(-9) \div 3]^2 = (-4)^2 - 3(-3)^2 = 16$ -3(9) = 16 - 27 = -11
 - **b)** Share probably thought that $(-3)^2 = -9$; here is a possible incorrect solution: $(-4)^2 - 3[(-9) \div 3]^2 = (-4)^2 - 3(-3)^2 = 16$ -3(-9) = 16 + 27 = 43Aftab probably multiplied -3 and -9 before evaluating in the brackets and applying the exponent. Here is a possible incorrect solution:
 - $(-4)^2 3[(-9) \div 3]^2 = 16 + (27 \div 3)^2 = 16 + 9^2 = 16 + 81 = 97$

Kyra probably squared the 3 before doing any other operation. Here is a possible incorrect solution:

 $(-4)^2 - 3[(-9) \div 3]^2 = 16 - 3[(-9) \div 9]$ = 16 - 3(-1) = 16 + 3 = 19