Rational Numbers

What You'll Learn

How to

- Identify positive and negative decimals and fractions as rational numbers
- Compare and order rational numbers
- Add, subtract, multiply, and divide rational numbers
- Solve problems that involve rational numbers
- Apply the order of operations with rational numbers

Why It's Important

Rational numbers are used by

- building contractors to measure and to estimate costs
- chefs to measure ingredients, plan menus, and estimate costs
- investment professionals to show changes in stock prices

Key Words

fraction
equivalent fraction
numerator
denominator
common denominator
multiple
common multiple

integer decimal repeating decimal terminating decimal rational number reciprocal

3.1 Skill Builder

Equivalent Fractions

 $\frac{1}{2}$, $\frac{2}{4}$, $\frac{3}{6}$, and $\frac{4}{8}$ are **equivalent fractions**.

They represent the same distance on a number line.

Here is one way to find equivalent fractions. Multiply or divide the numerator and denominator by the same number.

$$\underbrace{\frac{1}{2} = \frac{3}{6}}_{\times 3} \underbrace{\frac{4}{8} = \frac{2}{4}}_{\div 2}$$

Multiplying or dividing both the numerator and denominator by the same number is like multiplying or dividing by 1. The original quantity is unchanged.

Check

1. Write 2 equivalent fractions.

a)
$$\frac{7}{10}$$
 $\frac{7}{10} = \frac{7}{10} = \frac{7}{1$

b)
$$\frac{12}{15}$$
 $\frac{12}{15}$ $=$ $\frac{12}{15}$ $=$

2. Write an equivalent fraction with the given denominator.

a)
$$\frac{3}{5}$$
 $=$ $\frac{3}{20}$ 5 × 4 = 20, so multiply the numerator and denominator by 4.

b)
$$\frac{1}{4} = \frac{12}{12} \quad 4 \times \underline{\qquad} = 12$$
, so the numerator and denominator by

c)
$$\frac{2}{15}$$
 $=$ $\frac{2}{3}$ 15 \div $=$ 3, so divided the numerator and denominator by $\underline{\qquad}$.

d)
$$\frac{5}{24} = \frac{5}{6}$$
 24 ÷ ___ = 6, so ___ the numerator and denominator by ____

Comparing Fractions

Here are 3 ways to compare $\frac{3}{4}$ and $\frac{5}{8}$.

• Using area models:

Compare the shaded areas: $\frac{3}{4} > \frac{5}{8}$

• Using number lines:

Numbers increase from left to right on a number line.

From the number line: $\frac{5}{8} < \frac{3}{4}$

• Writing equivalent fractions:

$$\underbrace{\frac{3}{4} = \frac{6}{8}}_{\times 2}$$

$$\frac{5}{8} < \frac{6}{8}$$
; so, $\frac{5}{8} < \frac{3}{4}$

Check

Compare the fractions in each pair. Write >, <, or =.

1. a)
$$\frac{7}{8} - \frac{3}{4}$$

b)
$$\frac{3}{.5} - \frac{7}{10}$$

c)
$$\frac{7}{12} - \frac{2}{3}$$

d)
$$\frac{6}{7} - \frac{6}{8}$$

2. a)
$$\frac{2}{5} - \frac{3}{10}$$

b)
$$\frac{3}{5} - \frac{9}{10}$$

Common Denominators

To find a common denominator of $\frac{1}{2}$ and $\frac{2}{3}$:

Look for equivalent fractions with the same denominator.

List the multiples of 2: 2, 4, 6, 8, 10, 12, 14, ...

List the multiples of 3: 3, 6, 9, 12, 15, ...

Rewrite $\frac{1}{2}$ and $\frac{2}{3}$ with denominator 6.

Equivalent fractions help us compare, add, or subtract fractions.

6 is the least common multiple of 2 and 3. It is the simplest common denominator to work with.

Check

1. Write equivalent fraction pairs with a common denominator.

a) $\frac{1}{2}$ and $\frac{3}{8}$

So, $\frac{1}{2}$ = and $\frac{3}{8}$ =

Multiples of 2: 2, 4, 6, 8, 10, ...

Multiples of 8: 8, 16, ...

A common denominator is ____.

b) $\frac{3}{4}$ and $\frac{5}{6}$

So, $\frac{3}{4}$ = and $\frac{5}{6}$ =

Multiples of 4:

Multiples of 6:

c) $\frac{3}{5}$ and $\frac{2}{3}$

So, $\frac{3}{5}$ and $\frac{2}{3}$ =

Multiples of ___:

Multiples of ___: ____

2. Compare each pair of fractions from question 1.

- a) $\frac{1}{2}$ and $\frac{3}{8}$. Since __>__, $\frac{1}{2}$ __ $\frac{3}{8}$
- **b)** $\frac{3}{4}$ and $\frac{5}{6}$. Since __<__, $\frac{3}{4}$ __ $\frac{5}{6}$
- c) $\frac{3}{5}$ and $\frac{2}{3}$. Since -<, $\frac{3}{5}$, $-\frac{2}{3}$

Converting between Fractions and Decimals

Fractions to decimals

The fraction bar represents division. For example:

$$\frac{1}{6}$$
 means $1 \div 6$

Use a calculator:

$$1 \div 6 = 0.166666...$$

$$= 0.1\overline{6}$$

So,
$$\frac{1}{6} = 0.1\overline{6}$$

means that 6 repeats.

 $0.1\overline{6}$ is a **repeating decimal.**

The bar over the 6

0.875 is a terminating decimal.

· Decimals to fractions

Use place value. For example:

0.7 means 7 tenths.

So,
$$0.7 = \frac{7}{10}$$

0.23 means 23 hundredths

So,
$$0.23 = \frac{23}{100}$$

 $\frac{7}{8}$ means $7 \div 8$

So, $\frac{7}{8} = 0.875$

Use a calculator: $7 \div 8 = 0.875$

Check

1. Write each fraction as a decimal.

a)
$$\frac{3}{4} = 3 \div 4$$

b)
$$\frac{2}{3} =$$

c)
$$\frac{.5}{8} =$$

d)
$$\frac{5}{9} = 5 \div 9$$

e) $4\frac{1}{5} = 4 + \frac{1}{5}$ **f)** $2\frac{1}{3} = 2 +$

f)
$$2\frac{1}{2} = 2 +$$

- 2. Which numbers in question 1 are:
 - a) repeating decimals?
- **b)** terminating decimals?

3. Write each decimal as a fraction.

3.1 What Is a Rational Number?

FOCUS Compare and order rational numbers.

Rational numbers include:

- integers
- positive and negative fractions

Here is a number line that displays some rational numbers.

- positive and negative mixed numbers
- · repeating and terminating decimals

Example 1

Finding a Rational Number between Two Given Numbers

Find 2 rational numbers between $2\frac{1}{3}$ and $3\frac{3}{4}$.

Solution

Label a number line from 2 to 4.

 $2\frac{1}{3}$ is one-third of the way from 2 to 3.

 $3\frac{3}{4}$ is three-quarters of the way from 3 to 4.

From the number line, 2 rational numbers between $2\frac{1}{3}$ and $3\frac{3}{4}$ are: $2\frac{2}{3}$ and 3

There are many correct solutions. Which ones can you name?

Check

1. Find 2 rational numbers between each pair of numbers.

a) $-2\frac{1}{3}$ and $-1\frac{2}{5}$

Plot points to show $-1\frac{2}{5} \text{ and } -2\frac{1}{3}.$

From the number line, 2 values between $-2\frac{1}{3}$ and $-1\frac{2}{5}$ are: ____ and ___

b) -0.3 and 0.6

From the number line, 2 values between -0.3 and 0.6 are: ____ and ____

Example 2

Comparing Rational Numbers on a Number Line

Order each set of rational numbers from least to greatest.

- **a)** $0.3, 0.\overline{3}, -1.7, 0.6, -0.6$
- **b)** $3\frac{1}{4}$, $-\frac{3}{4}$, $-\frac{4}{8}$, $1\frac{3}{4}$, $-2\frac{3}{8}$

Solution

a) Plot the numbers on a number line.

To plot 0.3 and $0.\overline{3}$, think: $0.\overline{3} = 0.3333...$

So, $0.\overline{3}$ is slightly greater than 0.3.

From the number line, the order from least to greatest is: -1.7, -0.6, 0.3, $0.\overline{3}$, 0.6

b) Plot the numbers on a number line.

From the number line, the order from least to greatest is: $-2\frac{3}{8}$, $-\frac{3}{4}$, $-\frac{4}{8}$, $1\frac{3}{4}$, $3\frac{1}{4}$

Check

- 1. Order each set of numbers from least to greatest.
 - **a)** $-1.\overline{8}$, 0.7, -2, -2.1, -0.3

From the number line, the order from least to greatest is: __

b) $-1\frac{9}{10}$, -2, $-1\frac{4}{5}$, $\frac{4}{5}$, $-1\frac{1}{5}$

The number line is divided in fifths to help you plot the numbers.

From the number line, the order from least to greatest is: ____

Practice

1. Write each rational number as a decimal.

a)
$$\frac{3}{5} = \underline{\qquad} \div \underline{\qquad}$$

b)
$$\frac{5}{3} = \underline{\hspace{1cm}}$$

c)
$$-\frac{3}{5} = -(\underline{\ } \div \underline{\ } \underline{\ })$$

d)
$$\frac{-3}{5} = (\underline{\hspace{1cm}}) \div \underline{\hspace{1cm}}$$

e)
$$\frac{-5}{3} = (\underline{\hspace{1cm}}) \div \underline{\hspace{1cm}}$$

f)
$$\frac{3}{-5} =$$

Look for matching answers. What conclusion can you make?

- 2. Plot and compare each pair of rational numbers.
 - a) $4\frac{2}{5}$ and $4\frac{3}{5}$

b) $\frac{2}{3}$ and $-\frac{1}{3}$

From the number line,

c) $-5\frac{5}{6}$ and $-5\frac{1}{6}$

3. a) Write a decimal to match each point on the number line.

auth-office) most other yes land

b) Write the numbers in part a from least to greatest.