Quick Review

➤ A right triangle has two **legs** that form the right angle. The side opposite the right angle is called the **hypotenuse**.

The three sides of a right triangle form a relationship known as the **Pythagorean Theorem**.

Pythagorean Theorem: The area of the square on the hypotenuse is equal to the sum of the areas of the squares on the legs.

➤ In the diagram:

Area of square on hypotenuse:

$$10^2 \text{ cm}^2 = 100 \text{ cm}^2$$

Areas of squares on legs:

$$6^2 \text{ cm}^2 + 8^2 \text{ cm}^2 = 36 \text{ cm}^2 + 64 \text{ cm}^2$$

 $= 100 \text{ cm}^2$

Notice that $10^2 = 6^2 + 8^2$.

This theorem is true for all right triangles.

You can use the Pythagorean Theorem to find the length of any side of a right triangle when you know the lengths of the other two sides.

To calculate the hypotenuse h, solve for h in this equation:

$$h^2 = 7^2 + 10^2$$

$$h^2 = 49 + 100$$

$$h^2=149$$

$$h = \sqrt{149}$$

Use a calculator: h = 12.2

To calculate the leg with length l, solve for l in this equation:

$$12^2 = l^2 + 9^2$$

$$144 = l^2 + 81$$

$$144 - 81 = l^2 + 81 - 81$$

$$63 = l^2$$

$$\sqrt{63} = 1$$

Use a calculator: $l \doteq 7.9$ cm

Practice

1. Identify the legs and the hypotenuse of each right triangle.

a)

2. Circle the length of the unknown side in each right triangle.

a)

 $\sqrt{89}$ $\sqrt{13}$

√161 17

3. Find the length of the unknown side in each right triangle. Use a calculator to approximate each length to 2 decimal places, if necessary.

a)

4. Find the length of the unknown side in each triangle. Use a calculator to approximate each answer to 1 decimal place.

a)

